31 resultados para Bio-based chemicals

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global warming, energy savings, and life cycle analysis issues are factors that have contributed to the rapid expansion of plant-based materials for buildings, which can be qualified as environmental-friendly, sustainable and efficient multifunctional materials. This review presents an overview on the several possibilities developed worldwide about the use of plant aggregate to design bio-based building materials. The use of crushed vegetal aggregates such as hemp (shiv), flax, coconut shells and other plants associated to mineral binder represents the most popular solution adopted in the beginning of this revolution in building materials. Vegetal aggregates are generally highly porous with a low apparent density and a complex architecture marked by a multi-scale porosity. These geometrical characteristics result in a high capacity to absorb sounds and have hygro-thermal transfer ability. This is one of the essential characteristics which differ of vegetal concrete compared to the tradition mineral-based concretes. In addition, the high flexibility of the aggregates leads to a non-fragile elasto-plastic behavior and a high deformability under stress, lack of fracturing and marked ductility with absorbance of the strains ever after having reached the maximum mechanical strength. Due to the sensitivity to moisture, the assessment of the durability of vegetal concrete constitutes one of the next scientific challenging of bio-based building materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ammoxidation of ethanol is investigated as a renewable process for the production of acetonitrile from a bio-feedstock. Palladium catalysts are shown to be active and very selective (>99%) to this reaction at moderate to low temperatures (150-240 °C), with acetonitrile yields considered a function of Pd morphology. Further investigations reveal that the stability of these catalysts is influenced by an unselective product, and that any deactivation observed is reversible. Interpretation of this deactivation allows operating conditions to be defined for the stable, high yielding production of acetonitrile from ethanol.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bioenergy is a key component of the European Union long term energy strategy across all sectors, with a target contribution of up to 14% of the energy mix by 2020. It is estimated that there is the potential for 1TWh of primary energy from biogas per million persons in Europe, derived from agricultural by-products and waste. With an agricultural sector that accounts for 75% of land area and a large number of advanced engineering firms, Northern Ireland is a region with considerable potential for an integrated biogas industry. Northern Ireland is also heavily reliant on imported fossil fuels. Despite this, the industry is underdeveloped and there is a need for a collaborative approach from research, business and policy-makers across all sectors to optimise Northern Ireland’s abundant natural resources. ‘Developing Opportunities in Bio-Energy’ (i.e. Do Bioenergy) is a recently completed project that involved both academic and specialist industrial partners. The aim was to develop a biogas research action plan for 2020 to define priorities for intersectoral regional development, co-operation and knowledge transfer in the field of production and use of biogas. Consultations were held with regional stakeholders and working groups were established to compile supporting data, decide key objectives and implementation activities. Within the context of this study it was found that biogas from feedstocks including grass, agricultural slurry, household and industrial waste have the potential to contribute from 2.5% to 11% of Northern Ireland’s total energy consumption. The economics of on-farm production were assessed, along with potential markets and alternative uses for biogas in sectors such as transport, heat and electricity. Arising from this baseline data, a Do Bioenergy was developed. The plan sets out a strategic research agenda, and details priorities and targets for 2020. The challenge for Northern Ireland is how best to utilise the biogas – as electricity, heat or vehicle fuel and in what proportions. The research areas identified were: development of small scale solutions for biogas production and use; solutions for improved nutrient management; knowledge supporting and developing the integration of biogas into the rural economy; and future crops and bio-based products. The human resources and costs for the implementation were estimated as 80 person-years and £25 million respectively. It is also clear that the development of a robust bio-gas sector requires some reform of the regulatory regime, including a planning policy framework and a need to address social acceptance issues. The Action Plan was developed from a regional perspective but the results may be applicable to other regions in Europe and elsewhere. This paper presents the methodology, results and analysis, and discussion and key findings of the Do Bioenergy report for Northern Ireland.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The combination of bio- and chemo-catalysis to form a single synthetic route is a powerful methodology for the improvement of chemical synthesis. The extreme methods of biocatalysis (whole cell and isolated enzyme) fulfill very different roles. Biocatalysis by isolated enzymes enables highly efficient chemical transformations of extremely high selectivity and low contamination; however, conditions and substrates are limited to a narrow range. Whole cell biocatalysis enables the conversion of crude substrates, such as those derived from biomass; however, the products tend to be impure and delivered in dilute aqueous solution. Chemocatalysis is a well-established technique, and the addition of chemical catalysis and chemocatalytic methods to biocatalysis enables synthetic chemists to avoid the shortcomings of a biocatalytic step. For example, in enzymatic catalysis the addition of a chemical catalyst can allow the conversion of a racemic alcohol to an enantiopure, instead of racemic, product. In whole cell biocatalysis chemical reagents can assist the separation, transformation, and further isolation of the functionality of interest. The cooperation of bio- and chemocatalysts enables sustainable production of chemicals that would be impossible using biocatalysis alone, while achieving selectivities and using substrates not currently possible with chemocatalysis alone.