13 resultados para Berti, Giovanni Lorenzo, 1696-1766.
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Automated sediment toxicity testing and biomonitoring has grown rapidly. This study tested the suitability of the marine amphipod Corophium volutator (Pallas, 1766) for sediment biomonitoring using the Multispecies Freshwater Biomonitor (MFB). Two experiments were undertaken to (1) characterize individual behaviors of C. volutator using the MFB and (2) examine behavioral changes in response to sediment spiked with the pesticide Bioban. Four behaviors were visually identified (walking, swimming, grooming and falling) and characterized in the MFB as different patterns of locomotor activity (0-2 Hz range). Ventilation was not visually observed but was detected by the MFB (2-8 Hz). No clear diel activity patterns were detected. The MFB detected an overall increase in C. volutator locomotor activity after Bioban addition to the sediments (56, 100, 121 mg kg(-1)). C. volutator was more active (both locomotion and ventilation) in the water column than the spiked sediment. C. volutator appears a sensitive and appropriate species for behavioral sediment toxicity assessment and biomonitoring. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Contemporary studies of sea turtle diving behaviour are generally based upon sophisticated techniques such as the attachment of time depth recorders. However, if the risks of misinterpretation are to be minimized, it is essential that electronic data are analysed in the light of first-hand observations. To this aim, we set out to make observations of juvenile hawksbill turtles (Eretmochelys imbricata , Linnaeus, 1766) foraging and resting in a shallow water coral reef habitat around the granitic Seychelles (4degrees'S, 55degrees'E). Data were collected from six study sites characterized by a shallow reef plateau (
Resumo:
A brief account of Christian Gottlob Neefe's engagement with Mozart's Le nozze di Figaro and Don Giovanni as exemplified in his correspondence.
Resumo:
Ancient columns, made with a variety of materials such as marble, granite, stone or masonry are an important part of the
European cultural heritage. In particular columns of ancient temples in Greece and Sicily which support only the architrave are
characterized by small axial load values. This feature together with the slenderness typical of these structural members clearly
highlights as the evaluation of the rocking behaviour is a key aspect of their safety assessment and maintenance. It has to be noted
that the rocking response of rectangular cross-sectional columns modelled as monolithic rigid elements, has been widely investigated
since the first theoretical study carried out by Housner (1963). However, the assumption of monolithic member, although being
widely used and accepted for practical engineering applications, is not valid for more complex systems such as multi-block columns
made of stacked stone blocks, with or without mortar beds. In these cases, in fact, a correct analysis of the system should consider
rocking and sliding phenomena between the individual blocks of the structure. Due to the high non-linearity of the problem, the
evaluation of the dynamic behaviour of multi-block columns has been mostly studied in the literature using a numerical approach
such as the Discrete Element Method (DEM). This paper presents an introductory study about a proposed analytical-numerical
approach for analysing the rocking behaviour of multi-block columns subjected to a sine-pulse type ground motion. Based on the
approach proposed by Spanos (2001) for a system made of two rigid blocks, the Eulero-Lagrange method to obtain the motion
equations of the system is discussed and numerical applications are performed with case studies reported in the literature and with a
real acceleration record. The rocking response of single block and multi-block columns is compared and considerations are made
about the overturning conditions and on the effect of forcing function’s frequency.
.