27 resultados para Benthic habitats

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many marine organisms have pelagic larval stages that settle into benthic habitats occupied by older individuals; however, a mechanistic understanding of inter cohort interactions remains elusive for most species. Patterns of spatial covariation in the densities of juvenile and adult age classes of a small temperate reef fish, the common triplefin (Forsterygion lapillum), were evaluated during the recruitment season (Feb–Mar, 2011) in Wellington, New Zealand (41°17′S, 174°46′E). The relationship between juvenile and adult density among sites was best approximated by a dome-shaped curve, with a negative correlation between densities of juveniles and adults at higher adult densities. The curve shape was temporally variable, but was unaffected by settlement habitat type (algal species). A laboratory experiment using a “multiple-predator effects”design tested the hypothesis that increased settler mortality in the presence of adults (via enhanced predation risk or cannibalism) contributed to the observed negative relationship between juveniles and adults. Settler mortality did not differ between controls and treatments that contained either one (p = 0.08) or two (p = 0.09) adults. However, post hoca analyses revealed a significant positive correlation between the mean length of juveniles used in experimental trials and survival of juveniles in these treatments, suggesting that smaller juveniles may be vulnerable to cannibalism. There was no evidence for risk enhancement or predator interference when adults were present alongside a hetero specific predator (F. varium). These results highlight the complex nature of intercohort relationships in shaping recruitment patterns and add to the growing body of literature recognizing the importance of age class interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our knowledge of the effects of consumer species loss on ecosystem functioning is limited by a paucity of manipulative field studies, particularly those that incorporate inter-trophic effects. Further, given the ongoing transformation of natural habitats by anthropogenic activities, studies should assess the relative importance of biodiversity for ecosystem processes across different environmental contexts by including multiple habitat types. We tested the context-dependency of the effects of consumer species loss by conducting a 15-month field experiment in two habitats (mussel beds and rock pools) on a temperate rocky shore, focussing on the responses of algal assemblages following the single and combined removals of key gastropod grazers (Patella vulgata, P. ulyssiponensis, Littorina littorea and Gibbula umbilicalis). In both habitats, the removal of limpets resulted in a larger increase in macroalgal richness than that of either L. littorea or G. umbilicalis. Further, by the end of the study, macroalgal cover and richness were greater following the removal of multiple grazer species compared to single species removals. Despite substantial differences in physical properties and the structure of benthic assemblages between mussel beds and rock pools, the effects of grazer loss on macroalgal cover, richness, evenness and assemblage structure were remarkably consistent across both habitats. There was, however, a transient habitat-dependent effect of grazer removal on macroalgal assemblage structure that emerged after three months, which was replaced by non-interactive effects of grazer removal and habitat after 15 months. This study shows that the effects of the loss of key consumers may transcend large abiotic and biotic differences between habitats in rocky intertidal systems. While it is clear that consumer diversity is a primary driver of ecosystem functioning, determining its relative importance across multiple contexts is necessary to understand the consequences of consumer species loss against a background of environmental change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Foraminifera are an important faunal element of the benthos in oxygen-depleted settings such as Oxygen Minimum Zones (OMZs) where they can play a relevant role in the processing of phytodetritus. We investigated the uptake of phytodetritus (labeled with 13C and 15N) by cal-careous foraminifera in the 0-1 cm sediment horizon under different oxygen concentrations within the OMZ in the eastern Arabian Sea. The in situ tracer experiments were carried out along a depth transect on the Indian margin over a period of 4 to 10 days. The uptake of phy-todetrital carbon within 4 days by all investigated species shows that phytodetritus is a rele-vant food source for foraminifera in OMZ sediments. The decrease of total carbon uptake from 540 to 1100 m suggests a higher demand for carbon by species in the low-oxygen core region of the OMZ or less food competition with macrofauna. Especially Uvigerinids showed high uptake of phytodetrital carbon at the lowest oxygenated site. Variation in the ratio of phytodetrital carbon to nitrogen between species and sites indicates that foraminiferal carbon and nitrogen use can be decoupled and different nutritional demands are found between spe-cies. Lower ratio of phytodetrital carbon and nitrogen at 540 m could hint for greater demand or storage of food-based nitrogen, ingestion or hosting of bacteria under almost anoxic condi-tions. Shifts in the foraminiferal assemblage structure (controlled by oxygen or food availabil-ity) and in the presence of other benthic organisms account for observed changes in the pro-cessing of phytodetritus in the different OMZ habitats. Foraminifera dominate the short-term processing of phytodetritus in the OMZ core but are less important in the lower OMZ bounda-ry region of the Indian margin as biological interactions and species distribution of foraminifera change with depth and oxygen levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Invasive species can impact native species and alter assemblage structure, which affects associated ecosystem functioning. The pervasive Pacific oyster, Crassostrea gigas, has been shown to affect the diversity and composition of many host ecosystems. We tested for effects of the presence of the invasive C. gigas on native assemblages by comparing them directly to assemblages associated with the declining native European oyster, Ostrea edulis. The presence of both oyster species was manipulated in intertidal and subtidal habitats and reefs were constructed at horizontal and vertical orientation to the substratum. After 12 months, species diversity and benthic assemblage structure between assemblages with C. gigas and O. edulis were similar, but differed between habitats and orientation, suggesting that both oyster species were functionally similar in terms of biodiversity facilitation. These findings support evidence, that non-native species could play an important role in maintaining biodiversity in systems with declining populations of native species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biotic interactions such as predation and competition can influence aquatic communities at small spatial scales, but they are expected to be overridden by environmental factors at large scales. The continuing threat to freshwater biodiversity of biological invasions indicates that biotic factors do, however, have important structuring roles. In Irish rivers, the native amphipod Gammarus duebeni celticus has become locally extinct, ostensibly through differential predation by the more aggressive and introduced G. pulex. This mechanism explains impacts of G. pulex at within-river spatial scales on native macroinvertebrate community diversity, including declines in ephemeropterans, plecopterans, dipterans and oligochaetes. To determine if these patterns are predictable at larger spatial scales, we assessed patterns in native macroinvertebrate communities across river sites of the Erne catchment in 1998 and 1999, in conjunction with the distribution of G. pulex and G. d. celticus. In both years, G. pulex dominated invaded sites, whereas G. d. celticus occurred at low abundance in uninvaded sites. In both years, invaded sites had lower diversity and fewer pollution sensitive invertebrate species than un-invaded sites. Community ordination in 1998 showed that invaded sites had higher conductivity, smaller substrate particle size and comprised a lower proportion of pollution sensitive taxa including Ephemeroptera and Plecoptera. In contrast, in 1999, conductivity was the only variable explaining site ordination along axis 1, but was unable to separate sites with respect to invasion status. A second explanatory axis separated sites with respect to invasion status, with invaded sites having fewer taxa, including lower abundance of ephemeropterans, dipterans and plecopterans. Laboratory experiments examined the potential role of differential predation between the two Gammarus species in explaining these taxon specific patterns in the field. Survival of the ephemeropterans, Ephemerella ignita and Ecdyonurus venosus and the isopod, Asellus aquaticus, was lower when interacting with G. pulex than with G. d. celticus. This study indicates that G. putex may alter invertebrate community structure at scales beyond those detected within individual rivers. However, effects may be influenced by gradients in physico-chemistry, which may be temporal or depend on catchment characteristics. Invasions by amphipods have increased globally, thus comprehensive assessments of their impacts and of other aquatic invaders, may only be apparent when studies are conducted at a range of spatio-temporal scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sargassum muticum is an invasive brown macroalga that originates from Japan. In the introduced range, thalli can grow in soft substratum habitats attached to embedded rock fragments and shells, Within Strangford Lough, Northern Ireland, S. muticum has rapidly colonised large areas of soft substrata, where dispersal by peripatetic or 'stone-walking' plants is very effective. Sediment cores were collected under and outside canopies of S. muticum in Strangford Lough (S. muticum first recorded there in 1995) and Langstone Harbour, English Channel (S. muticum first found there in 1974) to investigate modification of the infaunal assemblages. At both study sites, community analyses highlighted significant differences between the assemblages under the canopies and those in adjacent unvegetated areas. In Strangford Lough, the invertebrate community under the canopy contained a higher abundance of smaller, opportunistic, r-selected species than outside the canopy. By contrast, the communities under and outside the canopy at Langstone Harbour were similar in species composition, diversity and dominance, but overall faunal abundance was greater under the canopy. Sediment characteristics were not affected by S. muticum canopies, but the infaunal changes may be related to environmental modification; shading, flow suppression and temperature stratification were also investigated. The differences between these 2 sites indicate that localised conditions and/or the duration of colonisation of S. muticum are important in determining the nature of habitat modification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies of biological invasions predominantly stress threats to biodiversity through the elimination and replacement of native species. However, we must realise that resident communities may often be capable of integrating invaders, leading to patterns of coexistence. Within the past ninety years, three freshwater amphipod species have invaded Northern Ireland the North American Gammarus tigrinus and Crangonyx pseudogracilis, plus the European G. pulex. These species have come into contact with the ubiquitous native species, G. duebeni celticus. This study examined spatiotemporal patterns of stability of single and mixed species assemblages in an invaded lake. Lough Beg and its associated rivers were surveyed in summer 1994 and winter 1995, and a selection of stations re-sampled in summer one and five years later. All possible combinations of the four amphipod species were found. Although species presence/absence was stable between seasons at the scale of the whole lough, it was extremely fluid at the scale of individual sites, 82% of which changed in species composition between seasons. Overall mean amphipod abundance was similar across 5 distinguishable habitat types, but there were differences in species compositions among these habitats. In addition, although co-occurrences of Gammarus species did not differ from random, there was a strong negative association between Gammarus spp. and C. pseudogracilis. This latter pattern was at least in part generated by the better tolerance of C. pseudogracilis to lower water quality. A review of previous studies indicates that the exclusion of C. pseudogracilis by Gammarus species from high water quality areas is likely to involve biotic interaction. Thus, overall, co-existence of the four species, which is clearly dynamic and scale-dependent, appears promoted by spatial and temporal habitat heterogeneity. However, biotic interactions may also play a role in local exclusions. Since the three introduced species have not eliminated the native species, and each successive invasion has not replaced the previous invader, this study demonstrates that freshwater invaders may integrate with native communities leading to coexistence and increased species diversity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compared non-shivering thermogenesis between two adjacent populations of freshly captured common spiny mice (Acomys cahirinus) during both winter and summer. Mice were captured from north- and south-facing slopes (NFS and SFS) of the same valley that represent 'Mediterranean' and 'Desert' habitats, respectively. Oxygen consumption and body temperature responses to an injection of exogenous noradrenaline (NA) were higher during the winter than during the summer. in addition, SFS mice had a lower body temperature response to NA during the summer than the other groups of mice. This suggests that heat dissipation is likely to have been greatest in SFS mice during the summer. Overall this study shows that seasonal acclimatization of NST mechanisms is an important trait for small mammals that inhabit the Mediterranean ecosystem. Differences in physiological capabilities can occur temporally within populations across seasons, and spatially between populations that are only a short distance (200-500 m) apart.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The common spiny mouse Acomys cahirinus, of Ethiopian origin, has a widespread distribution across arid, semi-arid and Mediterranean parts of the Arabian sub-region. We compared the daily energy expenditure (DEE), water turnover NTTO) and sustained metabolic scope (SusMS = DEE/resting metabolic rate) of two adjacent populations during the winter. Mice were captured from North- and South- facing slopes (NFS and SFS) of the same valley, comprising mesic and xeric habitats, respectively. Both DEE and SusMS winter values were greater in NFS than SFS mice and were significantly greater than values previously measured in the summer for these two populations in the same environments. However, WTO values were consistent with previously established values and were not significantly different from allometric predictions for desert eutherians. We suggest that physiological plasticity in energy expenditure, which exists both temporally and spatially, combined with stable WTO, perhaps reflecting a xeric ancestry, has enabled A. cahirinus to invade a wide range of habitats. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. We compared resting metabolic rate (RMR) and non-shivering thermogenesis (NST) values between founder and F1-populations of winter-acclimatized Acomys cahirinus that originated from north- and south-facing slopes (NFS and SFS) of the same valley, representing mesic and xeric habitats. 2. NST was measured by the increase in oxygen consumption (VO2) and body temperature (T-b) after a noradrenaline (NA) injection (VO2 NA, TbNA). 3. Body mass and TbNA values were higher in SFS F1-mice, while RMR and VO2 NA values were higher in NFS F1-mice. Differences were not apparent in founders. 4. Results are consistent with NFS and SFS mice being considered as

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compared body temperature (T-b) daily rhythms in two populations of common spiny mice, Acomys cahirinus, during summer and winter months in relation to increasing dietary salt content. Mice were collected from the North and South facing slopes (NFS and SFS) of the same valley, that are exhibiting mesic and xeric habitats, respectively. During the summer, whilst mice were offered a water source containing 0.9% NaCl, SFS individuals had T-b peak values at 24:00, whereas NFS individuals had peak values at 18:00. When the salinity of the water source was increased, from 0.9 to 2.5% and then 3.5%, the difference between maximal and minimal T-b of both populations increased. In addition, with increased salinity, the T-b daily peak of SFS mice shifted to 18:00. During the winter, the mean daily T-b values of both populations of mice were lower than during the summer. At 0.9% salinity, the NFS mice exhibited a daily T-b variation with a peak at the beginning of the night. However, we did not detect any significant variation in daily T-b in the SFS mice. At 2.5% salinity, the difference between the mean daily T-b of mice from the two slopes increased. In winter we were unable to increase the salinity to 3.5% as the animals began to lose weight rapidly. We suggest that common spiny mice that inhabit these two micro-habitats axe forming two discrete populations that respond differently to the environmental pressures prevailing in each habitat, by evolving different physiological capacities. (C) 2002 Elsevier Science Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. The adaptive radiation of fishes into benthic (littoral) and pelagic (lentic) morphs in post-glaciallakes has become an important model system for speciation. Although these systems are well stud-ied, there is little evidence of the existence of morphs that have diverged to utilize resources in theremaining principal lake habitat, the profundal zone.
2. Here, we tested phenotype-environment correlations of three whitefish (Coregonus lavaretus)morphs that have radiated into littoral, pelagic and profundal niches in northern Scandinavianlakes. We hypothesized that morphs in such trimorphic systems would have a morphology adaptedto one of the principal lake habitats (littoral, pelagic or profundal niches). Most whitefish popula-tions in the study area are formed by a single (monomorphic) whitefish morph, and we furtherhypothesized that these populations should display intermediate morphotypes and niche utiliza-tion. We used a combination of traditional (stomach content, habitat use, gill raker counts) andmore recently developed (stable isotopes, geometric morphometrics) techniques to evaluate pheno-type-environment correlations in two lakes with trimorphic and two lakes with monomorphicwhitefish.
3. Distinct phenotype-environment correlations were evident for each principal niche in whitefishmorphs inhabiting trimorphic lakes. Monomorphic whitefish exploited multiple habitats, hadintermediate morphology, displayed increased variance in gillraker-counts, and relied significantlyon zooplankton, most likely due to relaxed resource competition.
4. We suggest that the ecological processes acting in the trimorphic lakes are similar to each other,and are driving the adaptive evolution of whitefish morphs, possibly leading to the formation ofnew species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A goal of phylogeography is to relate patterns of genetic differentiation to potential historical geographic isolating events. Quaternary glaciations, particularly the one culminating in the Last Glacial Maximum ~21 ka (thousands of years ago), greatly affected the distributions and population sizes of temperate marine species as their ranges retreated southward to escape ice sheets. Traditional genetic models of glacial refugia and routes of recolonization include these predictions: low genetic diversity in formerly glaciated areas, with a small number of alleles/haplotypes dominating disproportionately large areas, and high diversity including "private" alleles in glacial refugia. In the Northern Hemisphere, low diversity in the north and high diversity in the south are expected. This simple model does not account for the possibility of populations surviving in relatively small northern periglacial refugia. If these periglacial populations experienced extreme bottlenecks, they could have the low genetic diversity expected in recolonized areas with no refugia, but should have more endemic diversity (private alleles) than recently recolonized areas. This review examines evidence of putative glacial refugia for eight benthic marine taxa in the temperate North Atlantic. All data sets were reanalyzed to allow direct comparisons between geographic patterns of genetic diversity and distribution of particular clades and haplotypes including private alleles. We contend that for marine organisms the genetic signatures of northern periglacial and southern refugia can be distinguished from one another. There is evidence for several periglacial refugia in northern latitudes, giving credence to recent climatic reconstructions with less extensive glaciation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One mechanism for physiological adjustment of small mammals to different habitats and different seasons is by seasonal acclimatization of their osmoregulatory system. We examined the abilities of broad-toothed field mice (Apodemus mystacinus) from different ecosystems ('sub-alpine' and 'Mediterranean') to cope with salinity stress under short day (SD) and long day (W) photoperiod regimes. We compared urine volume, osmolarity, urea and electrolyte (sodium, potassium and chloride) concentrations. Significant differences were noted in the abilities of mice from the two ecosystems to deal with salinity load; in particular sub-alpine mice produced less concentrated urine than Mediterranean mice with SD- sub-alpine mice seeming to produce particularly dilute urine. Urea concentration generally decreased with increasing salinity, whereas sodium and potassium levels increased, however SD- sub-alpine mice behaved differently and appeared not to be able to excrete electrolytes as effectively as the other groups of mice. Differences observed provide an insight into the kinds of variability that are present within populations inhabiting different ecosystems, thus how populations may be able to respond to potential changes in their environment. Physiological data pertaining to adaptation to increased xeric conditions, as modelled by A. mystacinus, provides valuable information as to how other species may cope with potential climatic challenges.