78 resultados para Bed porosity
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Although it is well known that sandstone porosity and permeability are controlled by a range of parameters such as grain size and sorting, amount, type, and location of diagenetic cements, extent and type of compaction, and the generation of intergranular and intragranular secondary porosity, it is less constrained how these controlling parameters link up in rock volumes (within and between beds) and how they spatially interact to determine porosity and permeability. To address these unknowns, this study examined Triassic fluvial sandstone outcrops from the UK using field logging, probe permeametry of 200 points, and sampling at 100 points on a gridded rock surface. These field observations were supplemented by laser particle-size analysis, thin-section point-count analysis of primary and diagenetic mineralogy, quantitiative XRD mineral analysis, and SEM/EDAX analysis of all 100 samples. These data were analyzed using global regression, variography, kriging, conditional simulation, and geographically weighted regression to examine the spatial relationships between porosity and permeability and their potential controls. The results of bivariate analysis (global regression) of the entire outcrop dataset indicate only a weak correlation between both permeability porosity and their diagenetic and depositional controls and provide very limited information on the role of primary textural structures such as grain size and sorting. Subdividing the dataset further by bedding unit revealed details of more local controls on porosity and permeability. An alternative geostatistical approach combined with a local modelling technique (geographically weighted regression; GWR) subsequently was used to examine the spatial variability of porosity and permeability and their controls. The use of GWR does not require prior knowledge of divisions between bedding units, but the results from GWR broadly concur with results of regression analysis by bedding unit and provide much greater clarity of how porosity and permeability and their controls vary laterally and vertically. The close relationship between depositional lithofacies in each bed, diagenesis, and permeability, porosity demonstrates that each influences the other, and in turn how understanding of reservoir properties is enhanced by integration of paleoenvironmental reconstruction, stratigraphy, mineralogy, and geostatistics.
Resumo:
Near-infrared diffuse tomography was used in order to observe dynamic behaviour of flowing gases by measuring the 3D distributions of composition and temperature in a weakly scattering packed bed reactor, subject to wall effects and non-isothermal conditions. The technique was applied to the vapour phase hydrogen isotopic exchange reaction in a hydrophobic packing of low aspect ratio made of platinum on styrene divinyl benzene sulphonate copolymer resin. The results of tomography revealed uneven temperature and composition maps of water and deuterated water vapours in the core-packed bed and in the vicinity of the wall owing to flow maldistribution. The dynamic lag between the near-wall water vapour and deuterated water vapour compositions were observed suggesting that the convective transfer which was significant near the wall at the start, owing to high porosity, was also effective at large conversions. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This study investigates the influence of process parameters on the fluidised hot melt granulation of lactose and PEG 6000, and the subsequent tablet pressing of the granules. Granulation experiments were performed to assess the effect of granulation time and binder content of the feed on the resulting granule properties such as mass mean granule size, size distribution, granule fracture stress, and granule porosity. These data were correlated using the granule growth regime model. It was found that the dominant granule growth mechanisms in this melt granulation system were nucleation followed by steady growth (PEG 10–20% w/w). However, with binder contents greater than 20% w/w, the granulation mechanism moved to the “over-wet massing” regime in which discrete granule formation could not be obtained. The granules produced in the melt fluidised bed process were subsequently pressed into tablets using an industrial tablet press. The physical properties of the tablets: fracture stress, disintegration time and friability were assessed using industry standards. These analyses indicated that particle size and binder content of the initial granules influenced the mechanical properties of the tablets. It was noted that a decrease in initial granule size resulted in an increase in the fracture stress of the tablets formed.
Resumo:
The proportion of elderly in the population has dramatically increased and will continue to do so for at least the next 50 years. Medical resources throughout the world are feeling the added strain of the increasing proportion of elderly in the population. The effective care of elderly patients in hospitals may be enhanced by accurately modelling the length of stay of the patients in hospital and the associated costs involved. This paper examines previously developed models for patient length of stay in hospital and describes the recently developed conditional phase-type distribution (C-Ph) to model patient duration of stay in relation to explanatory patient variables. The Clinics data set was used to demonstrate the C-Ph methodology. The resulting model highlighted a strong relationship between Barthel grade, patient outcome and length of stay showing various groups of patient behaviour. The patients who stay in hospital for a very long time are usually those that consume the largest amount of hospital resources. These have been identified as the patients whose resulting outcome is transfer. Overall, the majority of transfer patients spend a considerably longer period of time in hospital compared to patients who die or are discharged home. The C-Ph model has the potential for considering costs where different costs are attached to the various phases or subgroups of patients and the anticipated cost of care estimated in advance. It is hoped that such a method will lead to the successful identification of the most cost effective case-mix management of the hospital ward.
Resumo:
This study investigates the use of co-melt fluidised bed granulation for the agglomeration of model pharmaceutical powders, namely, lactose mono-hydrate, PEG 10000, poly-vinyl pyrolidone and ibuprofen as a model drug. Granulation within the co-melt system was found to follow a nucleationâ??steady growthâ??coating regime profile. Using high molecular weight PEG binder, the granulation mechanism and thus the extent of granulation was found to be significantly influenced by binder viscosity. The compression properties of the granulate within the hot fluidised bed were correlated using a novel high temperature experimental procedure. It was found that the fracture stress and fractural modulus of the materials under hot processing conditions were orders of magnitude lower than those measured under ambient conditions. A range of particle velocities within the granulator were considered based on theoretical models. After an initial period of nucleation, the Stokes deformation number analysis indicated that only velocities within the high shear region of the fluidised bed were sufficient to promote significant granule deformation and therefore, coalescence. The data also indicated that larger granules de-fluidised preventing agglomeration by coalescence. Furthermore, experimental data indicated that dissipation of the viscous molten binder to the surface was the most important factor in the latter stages of the granulation process. From a pharmaceutical perspective the inclusion of the model drug, ibuprofen, combined with PVP in the co-melt process proved to be highly significant. It was found that using DSC analysis on the formulations that the decrease in the heat of fusion associated with the melting of ibuprofen within the FHMG systems may be attributed to interaction between PVP and ibuprofen through inter-molecular hydrogen bonding. This interaction decreases the crystallinity of ibuprofen and facilitates solubilisation and bioavailability within the solid matrix.