68 resultados para Batch reactor

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The water treatment capability of a novel photocatalytic slurry reactor was investigated using methylene blue (MB) as a model pollutant in an aqueous suspension. A pellet TiO 2 catalyst was employed and this freed the system from the need of filtration of catalyst following photocatalysis. This configuration combines the high surface area contact of catalyst with pollutant of the slurry reactor and also offers a high illumination of catalyst by its unique array of weir-like baffles. In this work, the batch adsorption of MB from aqueous solution (10μM) onto the TiO 2 catalyst was studied, adsorption isotherms and kinetics were determined from the experimental data. Complete degradation of MB was achieved within 60 min illumination with various loadings of catalyst (30-200 g L -1). A modest catalyst loading (30 g L -1) achieved 98% degradation within 60 min of irradiation. Experimental results indicate that this novel reactor configuration has a high effective mass transfer rate and UV light penetration characteristics. 

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The overall aim of this work was to establish the optimum conditions for acid hydrolysis of hemicellulosic biomass in the form of potato peel. The hydrolysis reaction was undertaken in a 1l high pressure pilot batch reactor using dilute phosphoric acid. Analysis of the decomposition rate of hemicellulosic biomass (namely Cellulose, Hemicellulose and lignin) was undertaken using HPLC of the reaction products namely, 5 and 6 carbon sugars. Process parameters investigated included, reactor temperature (from 135 degrees C to 200 degrees C) and acid concentration (from 2.5% (w/w) to 10% (w/w)). Analysis of the reactor products indicated that high conversion of cellulose to glucose was apparent although arabinose conversion was quite low due to thermally un-stability. However, an overall sugar yield is 82.5% was achieved under optimum conditions. This optimum yield was obtained at 135 degrees C and 10% (w/w) acid concentration. 55.2 g sugar/100 g dry potato peel is produced after a time of 8 min. The work indicates that the use of potato peel may be a feasible option as a feed material for the production of sugars for biofuel synthesis, due its low cost and high sugar yields. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of Al incorporation and pH adjustment during hydrolysis of the silica precursor on the thermal and structural stability of ordered microporous silica films with a 2D structure is presented. The structural stability of the films was determined from a combination of LA XRD/TEM data with porosity data obtained from ethanol adsorption isotherms. Thermogravimetric analysis and MR data were used to determine the template removal and the thermal stability. Stability of aluminium incorporated silica films has further been examined in several organic solvents with different polarity. A solvent with a higher polarity interacts more strongly with the films; the long-order structure disappeared after exposure to polar solvents. After exposure to non-polar solvents, the pore size uniformity was retained after 48 h. The samples with an Al/Si ratio of 0.007 showed the smallest d-spacing shift after exposure to hexane. The stability was further tested in the hydrogenation of phenylacetylene performed in a batch reactor over 1 wt.% Pd/Si(Al)O-2/Si (Al/Si = 0.007) films at 30 degrees C and 10 bar H-2 with hexane as solvent. No deactivation was observed in two subsequent hydrogenation runs. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The photocatalytic efficiencies of laboratory made and commercial TiO2 samples were compared using a standard test reaction: the photomineralization of 4-chlorophenol (4-CP) to CO2, H2O and HCl mediated by Degussa P25 TiO2 in a batch reactor. The results show that the rate of photodegradation of 4-CP, sensitized by a sample of TiO2, shows no clear simple dependence on physical characteristics such as the degree of crystallinity, the surface area and the percentage of H2O.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The combination of milli-scale processing and microwave heating has been investigated for the Cu-catalyzed Ullmann etherification in fine-chemical synthesis, providing improved catalytic activity and selective catalyst heating. Wall-coated and fixed-bed milli-reactors were designed and applied in the Cu-catalyzed Ullmann-type CO coupling of phenol and 4-chloropyridine. In a batch reactor the results show clearly increased yields for the microwave heated process at low microwave powers, whereas high powers and catalyst loadings reduced the benefits of microwave heating. Slightly higher yields were found in the Cu/ZnO wall-coated as compared to the Cu/TiO fixed-bed flow-reactor. The benefit here is that the reaction occurs at the surface of the metal nanoparticles confined within a support film making the nano-copper equally accessible. Catalyst deactivation was mainly caused by Cu oxidation and coke formation; however, at longer process times leaching played a significant role. Catalyst activity could partially be recovered by removal of deposited by-product by means of calcination. After 6h on-stream the reactor productivities were 28.3 and 55.1kgprod/(mR3h) for the fresh Cu/ZnO wall-coated and Cu/TiO fixed-bed reactor, respectively. Comparison of single- and multimode microwaves showed a threefold yield increase for single-mode microwaves. Control of nanoparticles size and loading allows to avoid high temperatures in a single-mode microwave field and provides a novel solution to a major problem for combining metal catalysis and microwave heating. Catalyst stability appeared to be more important and provided twofold yield increase for the CuZn/TiO catalyst as compared to the Cu/TiO catalyst due to stabilized copper by preferential oxidation of the zinc. For this catalyst a threefold yield increase was observed in single-mode microwaves which, to the best of our knowledge, led to a not yet reported productivity of 172kgprod/(mR3h) for the microwave and flow Ullmann CO coupling. © 2012 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aqueous solutions of a chlorinated VOC, 3,4-dichlorobut-1-ene, as well as other pollutants, may be mineralised to carbon dioxide, water and hydrochloric acid using a sealed rotating photocatalytic reactor. The effect of pH, dissolved oxygen concentration, light intensity, pollutant concentration and rotation speed on the degradation rate have been investigated as well as competition kinetics with methanol. This reactor may be optimised to minimise competition effects in mixed solutions. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herein batch and continuous mesophilic anaerobic digestion of grass silage liquor was studied. The continuous process was carried out in Armfield digesters with an OLR ranging from 0.851 to 1.77 kg COD m-3 day-1. The effect of recirculation of effluent from the digester was investigated using different OLRs of grass silage liquor feed. These results showed that as the OLR increased, the methane yield decreased for the reactor with no recycle and increased for the reactor with recycle. However, the COD removal for both digesters was nearly the same at the same OLR. Overall these studies show that grass silage liquor can produce a high quality methane steam between 70% and 80% and achieve methane yields of 0.385 m3 kg-1 COD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the numerous advantages of continuous processing, high-value chemical production is still dominated by batch techniques. In this paper, we investigate options for the continuous dehydrogenation of 1,2,3,4- tetrahydrocarbazole using a trickle bed reactor operating under realistic liquid velocities with and without the addition of a hydrogen acceptor. Here, a commercial 5 wt % Pd/Al2O3 catalyst was observed to slowly deactivate, hence proving unsuitable for continuous use. This deactivation was attributed to the strong adsorption of a byproduct on the surface of the support. Application of a base washing technique resolved this issue and a stable continuous reaction has been demonstrated. As was previously shown for the batch reaction, the addition of a hydrogen acceptor gas (propene) can increase the overall catalytic activity of the system. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To evaluate the effect of mass transfer limitations in the three-phase oxidation of cinnamyl alcohol carried out in toluene and an ionic liquid (1-butyl-3-methyl-imidazolium bis(trifluoromethylsulphonyl)imide), studies have been performed in a rotating disc reactor and compared with those carried out in a stirred tank reactor where mass transfer effects are considered negligible. High catalyst efficiencies are found in the stirred tank reactor with the use of both ionic liquid and toluene, although there is a decrease in rate for the ionic liquid reactions. In contrast, internal pore diffusion limits the reaction in both solvents in the rotating disc reactor. This mass transfer resistance reduces the problem of overoxidation of the metal surface when the reaction is carried out in toluene, leading to significantly higher rates of reaction than expected, although at the cost of decreased selectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin-zone TAP reactor is presented as a basis of the new state-by-state transient screening approach which has been proposed by the authors for non-steady-state kinetic characterization of industrial catalysts. The general thin-zone TAP reactor model is described, and its mathematical status is justified analytically. It is shown that this model provides high enough accuracy to be applicable in the wide conversion interval (up to 90%), which is an important advantage of this approach compared with the traditional differential reactor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution coefficient, K-d, is often used to quantify heavy metal mobility in soils. Batch sorption or column infiltration tests may be used to measure K-d. The latter are closer to natural soil conditions, but are difficult to conduct in clays. This difficulty can be overcome by using a laboratory centrifuge. An acceleration of 2600 gravities was applied to columns of London Clay, an Eocene clay sub-stratum, and Cu, Ni, and Zn mobility was measured in centrifuge infiltration tests, both as single elements and in dual competition. Single-element K-d values were also obtained from batch sorption tests, and the results from the two techniques were compared. It was found that K-d values obtained by batch tests vary considerably depending on the metal concentration, while infiltration tests provided a single K-d value for each metal. This was typically in the lower end of the range of the batch test K-d values. For both tests, the order of mobility was Ni > Zn > Cu. Metals became more mobile in competition than when in single-element systems: Ni K-d decreased 3.3 times and Zn K-d 3.4 times when they competed with Cu, while Cu decreased only 1.2 times when in competition with either Ni or Zn. Our study showed that competitive sorption between metals increases the mobility of those metals less strongly bound more than it increases the mobility of more strongly bound metals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A dielectric barrier discharge (DBD) generated by flowing helium between the parallel-plate electrodes of an open air reactor has been characterized using time resolved optical and electrical measurements. A sinusoidal voltage of up to 5 kV (peak to peak) of frequencies from 3 to 50 kHz has been applied to the discharge electrodes. The helium flow rate is varied up to 10 litre min(-1). The adjustment of flow rate allows the creation of uniform DBDs with optimized input power equal to 120 +/- 10 mW cm(-3). At flow rates from 4 to 6 litre min(-1) a uniform DBD is obtained. The maxima in the line intensities of N-2(+) and helium at 391.4 nm and 706.5 nm, respectively, 2 under those conditions indicate the importance of helium metastables and He-2(+) in sustaining such a discharge. The power efficiency and discharge 2 current show maxima when the DBD In He/air is uniform. The gas temperature during the discharge has been measured as 360 +/- 20 K.