10 resultados para Barrier Design.

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper the tracking system used to perform a scaled vehicle-barrier crash test is reported. The scaled crash test was performed as part of a wider project aimed at designing a new safety barrier making use of natural building materials. The scaled crash test was designed and performed as a proof of concept of the new mass-based safety barriers and the study was composed of two parts: the scaling technique and of a series of performed scaled crash tests. The scaling method was used for 1) setting the scaled test impact velocity so that energy dissipation and momentum transferring, from the car to the barrier, can be reproduced and 2) predicting the acceleration, velocity and displacement values occurring in the full-scale impact from the results obtained in a scaled test. To achieve this goal the vehicle and barrier displacements were to be recorded together with the vehicle accelerations and angular velocities. These quantities were measured during the tests using acceleration sensors and a tracking system. The tracking system was composed of a high speed camera and a set of targets to measure the vehicle linear and angular velocities. A code was developed to extract the target velocities from the videos and the velocities obtained were then compared with those obtained integrating the accelerations provided by the sensors to check the reliability of the method.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, a novel method for modelling a scaled vehicle–barrier crash test similar to the 20◦ angled barrier test specified in EN 1317 is reported. The intended application is for proof-of-concept evaluation of novel roadside barrier designs, and as a cost-effective precursor to full-scale testing or detailed computational modelling. The method is based on the combination of the conservation of energy law and the equation of motion of a spring mass system representing the impact, and shows, for the first time, the feasibility of applying classical scaling theories to evaluation of roadside barrier design. The scaling method is used to set the initial velocity of the vehicle in the scaled test and to provide scaling factors to convert the measured vehicle accelerations in the scaled test to predicted full-scale accelerations. These values can then be used to calculate the Acceleration Severity Index score of the barrier for a full-scale test. The theoretical validity of the method is demonstrated by comparison to numerical simulations of scaled and full-scale angled barrier impacts using multibody analysis implemented in the crash simulation software MADYMO. Results show a maximum error of 0.3% ascribable to the scaling method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents criteria for the design of a flow distributor for even distribution of gas and liquid flows over parallel microchannels. The design criteria are illustrated for the case of a nitrogen-water Taylor flow (1

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Received for publication October 31, 2002. Design and operation of Fe0 permeable reactive barriers (PRBs) can be improved by understanding the long-term mineralogical transformations that occur within PRBs. Changes in mineral precipitates, cementation, and corrosion of Fe0 filings within an in situ pilot-scale PRB were examined after the first 30 months of operation and compared with results of a previous study of the PRB conducted 15 months earlier using X-ray diffraction and scanning electron microscopy employing energy dispersive X-ray and backscatter electron analyses. Iron (oxy)hydroxides, aragonite, and maghemite and/or magnetite occurred throughout the cores collected 30 mo after installation. Goethite, lepidocrocite, mackinawite, aragonite, calcite, and siderite were associated with oxidized and cemented areas, while green rusts were detected in more reduced zones. Basic differences from our last detailed investigation include (i) mackinawite crystallized from amorphous FeS, (ii) aragonite transformed into calcite, (iii) akaganeite transformed to goethite and lepidocrocite, (iv) iron (oxy)hydroxides and calcium and iron carbonate minerals increased, (v) cementation was greater in the more recent study, and (vi) oxidation, corrosion, and disintegration of Fe0 filings were greater, especially in cemented areas, in the more recent study. If the degree of corrosion and cementation that was observed from 15 to 30 mo after installation continues, certain portions of the PRB (i.e., up-gradient entrance of the ground water to the Fe0 section of the PRB) may last less than five more years, thus reducing the effectiveness of the PRB to mitigate contaminants. Abbreviations: EDX, energy dispersive X-ray • Fe0, zerovalent iron • PRB, permeable reactive barrier • SEM, scanning electron microscopy • XRD, X-ray diffraction

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Following a thorough site investigation, a biological Sequential Reactive Barrier (SEREBAR), designed to remove Polycyclic Aromatic Hydrocarbons (PAHs) and BTEX compounds, was installed at a Former Manufactured Gas Plant (FMGP) site. The novel design of the barrier comprises, in series, an interceptor and six reactive chambers. The first four chambers (2 nonaerated-2 aerated) were filled with sand to encourage microbial colonization. Sorbant Granular Activated Carbon (GAC) was present in the final two chambers in order to remove any recalcitrant compounds. The SEREBAR has been in continuous operation for 2 years at different operational flow rates (ranging from 320 L/d to 4000 L/d, with corresponding residence times in each chamber of 19 days and 1.5 days, respectively). Under low flow rate conditions (320-520 L/d) the majority of contaminant removal (>93%) occurred biotically within the interceptor and the aerated chambers. Under high flow rates (1000-4000 L/d) and following the installation of a new interceptor to prevent passive aeration, the majority of contaminant removal (>80%) again occurred biotically within the aerated chambers. The sorption zone (GAC) proved to be an effective polishing step, removing any remaining contaminants to acceptable concentrations before discharge down-gradient of the SEREBAR (overall removals >95%).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE:
Design and evaluation of a novel laser-based method for micromoulding of microneedle arrays from polymeric materials under ambient conditions. The aim of this study was to optimise polymeric composition and assess the performance of microneedle devices that possess different geometries.
METHODS:
A range of microneedle geometries was engineered into silicone micromoulds, and their physicochemical features were subsequently characterised.
RESULTS:
Microneedles micromoulded from 20% w/w aqueous blends of the mucoadhesive copolymer Gantrez® AN-139 were surprisingly found to possess superior physical strength than those produced from commonly used pharma polymers. Gantrez® AN-139 microneedles, 600 µm and 900 µm in height, penetrated neonatal porcine skin with low application forces (>0.03 N per microneedle). When theophylline was loaded into 600 µm microneedles, 83% of the incorporated drug was delivered across neonatal porcine skin over 24 h. Optical coherence tomography (OCT) showed that drug-free 600 µm Gantrez® AN-139 microneedles punctured the stratum corneum barrier of human skin in vivo and extended approximately 460 µm into the skin. However, the entirety of the microneedle lengths was not inserted.
CONCLUSION:
In this study, we have shown that a novel laser engineering method can be used in micromoulding of polymeric microneedle arrays. We are currently carrying out an extensive OCT-informed study investigating the influence of microneedle array geometry on skin penetration depth, with a view to enhanced transdermal drug delivery from optimised laser-engineered Gantrez® AN-139 microneedles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Design and operation of Fe0 permeable reactive barriers (PRBs) can be improved by understanding the long-term mineralogical transformations that occur within PRBs. Changes in mineral precipitates, cementation, and corrosion of Fe0 filings within an in situ pilot-scale PRB were examined after the first 30 months of operation and compared with results of a previous study of the PRB conducted 15 months earlier using X-ray diffraction and scanning electron microscopy employing energy dispersive X-ray and backscatter electron analyses. Iron (oxy)hydroxides, aragonite, and maghemite and/or magnetite occurred throughout the cores collected 30 mo after installation. Goethite, lepidocrocite, mackinawite, aragonite, calcite, and siderite were associated with oxidized and cemented areas, while green rusts were detected in more reduced zones. Basic differences from our last detailed investigation include (i) mackinawite crystallized from amorphous FeS, (ii) aragonite transformed into calcite, (iii) akaganeite transformed to goethite and lepidocrocite, (iv) iron (oxy)hydroxides and calcium and iron carbonate minerals increased, (v) cementation was greater in the more recent study, and (vi) oxidation, corrosion, and disintegration of Fe0 filings were greater, especially in cemented areas, in the more recent study. If the degree of corrosion and cementation that was observed from 15 to 30 mo after installation continues, certain portions of the PRB (i.e., up-gradient entrance of the ground water to the Fe0 section of the PRB) may last less than five more years, thus reducing the effectiveness of the PRB to mitigate contaminants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a linear precoder design for an underlay cognitive radio multiple-input multiple-output broadcast channel, where the secondary system consisting of a secondary base-station (BS) and a group of secondary users (SUs) is allowed to share the same spectrum with the primary system. All the transceivers are equipped with multiple antennas, each of which has its own maximum power constraint. Assuming zero-forcing method to eliminate the multiuser interference, we study the sum rate maximization problem for the secondary system subject to both per-antenna power constraints at the secondary BS and the interference power constraints at the primary users. The problem of interest differs from the ones studied previously that often assumed a sum power constraint and/or single antenna employed at either both the primary and secondary receivers or the primary receivers. To develop an efficient numerical algorithm, we first invoke the rank relaxation method to transform the considered problem into a convex-concave problem based on a downlink-uplink result. We then propose a barrier interior-point method to solve the resulting saddle point problem. In particular, in each iteration of the proposed method we find the Newton step by solving a system of discrete-time Sylvester equations, which help reduce the complexity significantly, compared to the conventional method. Simulation results are provided to demonstrate fast convergence and effectiveness of the proposed algorithm.