21 resultados para Baba Yaga (Legendary character)
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Chitons are often referred to as “living fossils” in part because they are proposed as one of the earliest-diverging groups of living molluscs, but also because the gross morphology of the polyplacophoran shell has been conserved for hundreds of millions of years. As such, the analysis of evolution and radiation within polyplacophorans is of considerable interest not only for resolving the shape of pan-molluscan phylogeny but also as model organisms for the study of character evolution. This study presents a new, rigorous cladistic analysis of the morphological characters used in taxonomic descriptions for chitons in the living suborder Lepidopleurina Thiele, 1910 (the earliest-derived living group of chitons). Shell-based characters alone entirely fail to recover any recognized subdivisions within the group, which may raise serious questions about the application of fossil data (from isolated shell valves). New analysis including characters from girdle armature and gill arrangements recovers some genera within the group but also points to the lack of monophyly within the main genus Leptochiton Gray, 1847. Additional characters from molecular data and soft anatomy, used in combination, are clearly needed to resolve questions of chiton relationships. However, the data sets currently available already provide interesting insights into the analytical power of traditional morphology as well as some knowledge about the early evolution and radiation of this group.
Resumo:
The seminal work of J. B. Jefferys highlighted two unusual features of the Victorian equity market, namely high share denomination and uncalled capital. This article examines the extent to which publicly traded company stocks in the nineteenth century had these features. It also analyses the effect of these features on stock returns using monthly data for the London Stock Market over the period 1825–70. We find that stocks with unpaid capital earned a higher return, which is consistent with investors being rewarded for the risk of a call on their personal assets. We also find that stocks with a high share denomination earned a lower return, which is consistent with the view that this feature was conducive to superior corporate governance.
Resumo:
Nanosecond time-resolved absorption (TA), resonance Raman (TR(3)), and infrared (TRIR) spectra are reported for several complexes [Ru(X)(R)(CO)(2)(alpha-diimine)] (X = Cl, Br, I; R = Me, Et; alpha-diimine = N,N'-diisopropyl-1,4-diaza-1,3-butadiene (iPr-DAB), pyridine-2-carbaldehyde-N-isopropylimine (iPr-PyCa), 2,2'-bipyridine (bpy)). This is the first instance in which the TA, TR(3), and TRIR techniques have been used to probe excited states in the same series of complexes. The TA spectra of the iodide complexes show a transient absorption between 550 and 700 nm, which does not depend on the solvent but shifts to lower energy in the order iPr-DAB > bpy > iPr-PyCa. This band is assigned to an intraligand transition. For the corresponding chloride and bromide complexes this band occurs at higher energy, most probably because of a change of character of the lowest excited state from XLCT to MLCT. The TRIR spectra show an increase in v(CO) (and k(CO)) on promotion to the excited state; however, the shifts Delta v(CO) show a decrease in the order Cl- > Br- > I-. The TR(3) spectra of the excited complexes [Ru(X)(R)(Co)(2)(iPr-DAB)] show v(s)(CN) of the iPr-DAB ligand 50-80 cm(-1) lower in frequency than for the complexes in their ground state. This frequency shift decreases in the order Cl- > Br- > I-, indicating a decrease of CT character of the lowest excited state in this order. However, going from X = Br to I, the effect on Delta v(CO) is much larger than the decrease of Delta v(s)(CN). This different effect on the CO- and CN-stretching frequencies is assigned to a gradual change in character of the lowest excited state from MLCT to XLCT when Cl- is replaced by Br- and I-. This result confirms a similar conclusion derived from previous resonance Raman and emission experiments on these complexes.
Resumo:
Heart rate (HR) has been widely studied as a measure of an individual's response to painful stimuli. It remains unclear whether changes in mean HR or the variability of HR are specifically related to the noxious stimulus (i.e. pain). Neither is it well understood how such changes reflect underlying neurologic control mechanisms that produce these responses, or how these mechanisms change during the first year of life. To study the changes in cardiac autonomic modulation that occur with acute pain and with age during early infancy, the relationship between respiratory activity and short-term variations of HR (i.e. respiratory sinus arrhythmia) was quantified in a longitudinal study of term born healthy infants who underwent a finger lance blood collection at 4 months of age (n = 24) and again at 8 months of age (n = 20). Quantitative respiratory activity and HR were obtained during baseline, lance, and recovery periods. Time and frequency domain analyses from 2.2-min epochs of data yielded mean values, spectral measures of low (0.04-0.15 Hz) and high (0.15-0.80 Hz) frequency power (LF and HF), and the LF/HF ratio. To determine sympathetic and parasympathetic cardiac activity, the transfer relation between respiration and HR was used. At both 4 and 8 months, mean HR increased significantly with the noxious event (p > 0.01). There were age-related differences in the pattern of LF, HF, and LF/HF ratio changes. Although these parameters all decreased (p > 0.01) at 4 months, LF and LF/HF increased at 8 months and at 8 months HF remained stable in response to the noxious stimulus. Transfer gain changes with the lance demonstrated a change from predominant vagal baseline to a sympathetic condition at both ages. The primary finding of this study is that a response to an acute noxious stimulus appears to produce an increase in respiratory-related sympathetic HR control and a significant decrease in respiratory-related parasympathetic control at both 4 and 8 months. Furthermore, with increasing age, the sympathetic and parasympathetic changes appear to be less intense, but more sustained.
Resumo:
Chitons are often referred to as "living fossils" in part because they are proposed as one of the earliest-diverging groups of living molluscs, but also because the gross morphology of the polyplacophoran shell has been conserved for hundreds of millions of years. As such, the analysis of evolution and radiation within polyplacophorans is of considerable interest not only for resolving the shape of pan-molluscan phylogeny but also as model organisms for the study of character evolution. This study presents a new, rigorous cladistic analysis of the morphological characters used in taxonomic descriptions for chitons in the living suborder Lepidopleurina Thiele, 1910 (the earliest-derived living group of chitons). Shell-based characters alone entirely fail to recover any recognized subdivisions within the group, which may raise serious questions about the application of fossil data (from isolated shell valves). New analysis including characters from girdle armature and gill arrangements recovers some genera within the group but also points to the lack of monophyly within the main genus Leptochiton Gray, 1847. Additional characters from molecular data and soft anatomy, used in combination, are clearly needed to resolve questions of chiton relationships. However, the data sets currently available already provide interesting insights into the analytical power of traditional morphology as well as some knowledge about the early evolution and radiation of this group.