19 resultados para BY-LAYER METHOD

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a method for tailoring local mechanical properties near channel surfaces of vascular structural polymers in order to achieve high structural performance in microvascular systems. While synthetic vascularized materials have been created by a variety of manufacturing techniques, unreinforced microchannels act as stress concentrators and lead to the initiation of premature failure. Taking inspiration from biological tissues such as dentin and bone, these mechanical deficiencies can be mitigated by complex hierarchical structural features near to channel surfaces. By employing electrostatic layer-by-layer assembly (ELbL) to deposit films containing halloysite nanotubes onto scaffold surfaces followed by matrix infiltration and scaffold removal, we are able to controllably deposit nanoscale reinforcement onto 200 micron diameter channel surface interiors in microvascular networks. High resolution strain measurements on reinforced networks under load verify that the halloysite reduces strain concentrations and improves mechanical performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have determined the absolute configurations of conformationally flexible cis-dihydrodiol metabolites (cis-1,2-dihydroxy-3,5-cyclohexadienes), bearing different substituents (e.g., Br, F, CF3, CN, Me) in 3- and 5-positions, by the method of confrontation of experimental and calculated electronic CD spectra and optical rotations. Convergent results were obtained by both methods in eight out of ten cases. For the difficult cases, where either conformer population and/or chiroptical properties (calculated rotational strengths of the long-wavelength Cotton effect or optical rotations) of contributing conformers remain inconclusive, the absolute configuration could still be correctly assigned based on one of the biased properties (either ECD or optical rotation). This approach appears well-suited for a broad spectrum of conformationally flexible chiral molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A L27 Taguchi experiment was done to investigate the effect of laser power, welding time, laser mode (CW and two pulsed modes), focus position, and their possible interactions on the weld-bead aspect ratio of laser-welded NiTi wires by using a 100W fibre laser. The optimized parameter setting to produce the full penetrated weldment with minimum welding defects is successfully determined in the Taguchi experiment. The laser mode is found to be the most important parameter that directly controls the weld-bead aspect ratio. The focus position is the secondly important parameter for the laser welding of NiTi wires. Strong interaction between the power and focus position is found in the Taguchi experiment. The optimized weldment produced by the Taguchi experiment is mainly of columnar dendritic structure in the weld zone (WZ) with the size of 1-3µm, while the HAZ exhibits equiaxed grain structure with the size of 5-10µm. The Vickers micro-hardness test indicted that the WZ and HAZ in the weldment are softened to certain extends after fibre laser welding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this research, a preliminary study was done to find out the initial parameter window to obtain the full-penetrated NiTi weldment. A L27 Taguchi experiment was then carried out to statistically study the effects of the welding parameters and their possible interactions on the weld bead aspect ratio (or penetration over fuse-zone width ratio), and to determine the optimized parameter settings to produce the full-penetrated weldment with desirable aspect ratio. From the statistical results in the Taguchi experiment, the laser mode was found to be the most important factor that substantially affects the aspect ratio. Strong interaction between the power and focus position was found in the Taguchi experiment. The optimized weldment was mainly of columnar dendritic structure in the weld zone (WZ), while the HAZ exhibited equiaxed grain structure. The XRD and DSC results showed that the WZ remained the B2 austenite structure without any precipitates, but with a significant decrease of phase transformation temperatures. The results in the micro-hardness and tensile tests indicated that the mechanical properties of NiTi were decreased to a certain extent after fibre laser welding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A lack of suitable high-performance cathode materials has become the major barrier to their applications in future advanced communication equipment and electric vehicle power systems. In this paper, we have developed a layer-by-layer self-assembly approach for fabricating a novel sandwich nanoarchitecture of multilayered LiV3O8 nanoparticle/graphene nanosheet (M-nLVO/GN) hybrid electrodes for potential use in high performance lithium ion batteries by using a porous Ni foam as a substrate. The prepared sandwich nanoarchitecture of M-nLVO/GN hybrid electrodes exhibited high performance as a cathode material for lithium-ion batteries, such as high reversible specific capacity (235 mA h g-1 at a current density of 0.3 A g-1), high coulombic efficiency (over 98%), fast rate capability (up to a current density of 10 A g-1), and superior capacity retention during cycling (90% capacity retention with a current density of 0.3 A g-1 after 300 cycles). Very significantly, this novel insight into the design and synthesis of sandwich nanoarchitecture would extend their application to various electrochemical energy storage devices, such as fuel cells and supercapacitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, an economical route based on hydrothermal and layer-by-layer (LBL) self-assembly processes has been developed to synthesize unique Al 2O3-modified LiV3O8 nanosheets, comprising a core of LiV3O8 nanosheets and a thin Al 2O3 nanolayer. The thickness of the Al2O 3 nanolayer can be tuned by altering the LBL cycles. When evaluated for their lithium-storage properties, the 1 LBL Al2O 3-modified LiV3O8 nanosheets exhibit a high discharge capacity of 191 mA h g-1 at 300 mA g-1 (1C) over 200 cycles and excellent rate capability, demonstrating that enhanced physical and/or chemical properties can be achieved through proper surface modification. © 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The deposition of stiff and strong coatings onto porous templates offers a novel strategy for fabricating macroscale materials with controlled architectures at the micro- and nanoscale. Here, layer-by-layer assembly is utilized to fabricate nanocomposite-coated foams with highly customizable properties by depositing polymer–nanoclay coatings onto open-cell foam templates. The compressive mechanical behavior of these materials evolves in a predictable manner that is qualitatively captured by scaling laws for the mechanical properties of cellular materials. The observed and predicted properties span a remarkable range of density-stiffness space, extending from regions of very soft elastomer foams to very stiff, lightweight honeycomb and lattice materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of nanostructured Ni-Zn ferrites Ni1-xZnxFe2O4 (x=0, 0.5 and 1) with a grain size from 24 to 65 nm have been prepared with a sol-gel method. The effect of composition and sintering temperature on morphology, magnetic properties, Curie temperature, specific heating rate at 295 kHz and hysteresis loss have been studied. The highest coercivity of 50 and 40 Oe, were obtained for NiFe2O4 and Ni0.5Zn0.5Fe2O4 samples with the grain size of 35 and 29 nm, respectively. The coercivity of Ni and Ni-Zn mixed ferrites decreased with temperature. The Bloch exponent was 1.5 for all samples. As the grain size increased, the Curie temperature of NiFe2O4 increased from 849 to 859 K. The highest saturation magnetization of 70 emu/g at 298 K and the highest specific heating rate of 1.6 K/s under radiofrequency heating at 295 kHz were observed over NiFe2O4 calcined at 1073 K. Both the magnitude of the hysteresis loss and the temperature dependence of the loss are influenced by the sintering temperature and composition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report here the first detection of hectometer-size objects by the method of serendipitous stellar occultation. This method consists of recording the diffraction shadow created when an object crosses the observer's line of sight and occults the disk of a background star. One of our detections is most consistent with an object between Saturn and Uranus. The two other diffraction patterns detected are caused by Kuiper Belt objects beyond 100 AU from the Sun and hence are the farthest known objects in the solar system. These detections show that the Kuiper Belt is much more extended than previously believed and that the outer part of the disk could be composed of smaller objects than the inner part. This gives critical clues to understanding the problem of the formation of the outer planets of the solar system.