77 resultados para BUCKLING

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The introduction of advanced welding methods as an alternative joining process to riveting in the manufacture of primary aircraft structure has the potential to realize reductions in both manufacturing costs and structural weight. However, welding processes can introduce undesirable residual stresses and distortions in the final fabricated components, as well as localized loss of mechanical properties at the weld joints. The aim of this research is to determine and characterize the key process effects of advanced welding assembly methods on stiffened panel static strength performance. This in-depth understanding of the relationships between welding process effects and buckling and collapse strength is required to achieve manufacturing cost reductions without introducing structural analysis uncertainties and hence conservative over designed welded panels. This current work is focused at the sub-component level and examines the static strength of friction stir welded multi stiffener panels. The undertaken experimental and computational studies have demonstrated that local skin buckling is predominantly influenced by the magnitude of welding induced residual stresses and associated geometric distortions, whereas panel collapse behavior is sensitive to the lateral width of the physically joined skin and stiffener flange material, the strength of material in the Heat Affected Zone as well as the magnitude of the welding induced residual stresses. Copyright © 2006 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.


--------------------------------------------------------------------------------

Reaxys Database Information
|

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To increase structural efficiency of stiffened panels in an aircraft, it is plausible to introduce skin buckling containment features to increase the local skin stability and thus static strength performance. Introducing buckling containment features may also significantly influence the fatigue crack growth performance of the stiffened panel. This study focuses on the experimental demonstration of panel durability with skin bay buckling containment features. Through a series of fatigue crack growth tests on integrally machined aluminium alloy stiffened panels, the potential to simultaneously improve static strength performance and crack propagation behaviour is demonstrated. The introduction of prismatic buckling containment features which have yielded significant static strength performance gains have herein demonstrated potential fatigue life gains of up to + 63 per cent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Assembling aircraft stiffened panels using friction stir welding offers potential to reduce fabrication time in comparison to current mechanical fastener assembly, making it economically feasible to select structurally desirable stiffener pitching and novel panel configurations. With such a departure from the traditional fabrication process, much research has been conducted on producing strong reliable welds, with less examination of the impact of welding process residual effects on panel structural behaviour and the development of appropriate design methods. This article significantly expands the available panel level compressive strength knowledge, demonstrating the strength potential of a welded aircraft panel with multiple lateral and longitudinal stiffener bays. An accompanying computational study has determined the most significant process residual effects that influence panel strength and the potential extent of panel degradation. The experimental results have also been used to validate a previously published design method, suggesting accurate predictions can be made if the conventional aerospace design methods are modified to acknowledge the welding altered panel properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A combined experimental and analytical study of a hat-stiffened carbon-fibre composite panel loaded in uniaxial compression was investigated. A buckling mode transition was observed in the panel's skin bay which was not captured using non-linear finite-element analysis. Good correlation between experimental and numerical strain and displacement results was achieved in the prebuckling and initial postbuckling region of the loading history. A Marguerre-type Rayleigh-Ritz energy method was applied to the skin bay using representative displacement functions of permissible mode shapes to explain the mode transition phenomenon. The central criterion of this method was based on the assumption that a change in mode shape occurred such that the total potential energy of the structure was maintained at a minimum. The ultimate strength of the panel was limited by the column buckling strength of the hat-stiffeners.