28 resultados para BOUNDARY-LAYER

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

70.00% 70.00%

Publicador:

Resumo:

When vessels operate within harbours or over a density interface in an estuary, the seabed or interface may be close to the tip of the propeller blades. The presence of this boundary will have an effect on the propeller wash and this can affect the erosion of the boundary. The influence of such a boundary on the characteristics of a propeller wash was studied in experiments using a horizontal fixed boundary to confine a propeller jet. Detailed velocity measurements within the jet were obtained using a 3D Particle Image Velocimetry (PIV) system. The bottom stream of a propeller jet was found to expand at a faster rate due to the reduction in pressure beneath the jet caused by the suppression of the replacement fluid. The boundary was found to significantly increase the axial velocities close to it, and reduce the rate of decay of the maximum axial velocity due to the confinement, reducing the height of the jet. Three zones within the propeller wash were identified, the first being before the jet impacted the boundary, the second in which the boundary layer developed at the fixed boundary, followed by a fully developed boundary layer region. Predictive equations to estimate the influence of the boundary have been developed and are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The physics of the plume-induced shock and separation, particularly at high plume to exit pressure ratios with and without shock-turbulent boundary-layer control methods, were studied using computational techniques. Mass-averaged Navier-Stokes equations with a two-equation turbulence model were solved by using a fully implicit finite volume scheme and time.marching algorithm. The control methodologies for shock interactions included a porous tail and a porous extension attached at the nozzle exit or trailing edge. The porous tail produced a weaker shock and fixed the shock position on the control surface. The effect of the porous extension on shock interactions was mainly to restrain the plume from strongly underexpanding during a change in flight conditions. These techniques could give an additional dimension to the design and control of supersonic missiles.