5 resultados para BIOGENIC MAGNETITE

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

While the role of magnetic cues for compass orientation has been confirmed in numerous animals, the mechanism of detection is still debated. Two hypotheses have been proposed, one based on a light dependent mechanism, apparently used by birds and another based on a "compass organelle" containing the iron oxide particles magnetite (Fe3O4). Bats have recently been shown to use magnetic cues for compass orientation but the method by which they detect the Earth's magnetic field remains unknown. Here we use the classic "Kalmijn-Blakemore" pulse re-magnetization experiment, whereby the polarity of cellular magnetite is reversed. The results demonstrate that the big brown bat Epteskus fuscus uses single domain magnetite to detect the Earths magnetic field and the response indicates a polarity based receptor. Polarity detection is a prerequisite for the use of magnetite as a compass and suggests that big brown bats use magnetite to detect the magnetic field as a compass. Our results indicate the possibility that sensory cells in bats contain freely rotating magnetite particles, which appears not to be the case in birds. It is crucial that the ultrastructure of the magnetite containing magnetoreceptors is described for our understanding of magnetoreception in animals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selection of sites for successful restoration of impacted shellfish populations depends on understanding the dispersion capability and habitat requirements of the species involved. In Strangford Lough, Northern Ireland, the horse mussel (Modiolus modiolus) biogenic reefs cover only a fraction of their historical range with the remaining reefs badly damaged and requiring restoration. Previous experimental trials suggest that translocation of horse mussels accelerates reef recovery and has therefore been proposed as a suitable restoration technique. We used a series of coupled hydrodynamic and particle dispersal models to assess larval dispersion from remnant and translocated populations to identify suitable areas for adult live M. modiolus translocation in Strangford Lough, Northern Ireland. A maximum entropy model (MAXENT) was used to identify if dispersing larvae could reach habitat suitable for adult M. modiolus. From these we predicted if translocated mussels will reseed themselves or be able to act as larval sources for nearby reefs. The dispersal models showed that the remnant M. modiolus populations are largely self-recruiting with little connectivity between them. The majority of larvae settled near the sources and movement was largely dependent on the tides and not influenced by wind or waves. Higher reef elevation resulted in larvae being able to disperse further away from the release point. However, larval numbers away from the source population are likely to be too low for successful recruitment. There was also little connectivity between the Irish Sea and Strangford Lough as any larvae entering the Lough remained predominantly in the Strangford Narrows. The areas covered by these self-seeding populations are suitable for M. modiolus translocation according to the MAXENT model. As a result of this work and in conjunction with other field work we propose a combination of total protection of all remaining larval sources and small scale translocations onto suitable substrata in each of the identified self-recruiting areas.