146 resultados para BINARY-MIXTURES

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The viscosity ? for eighteen binary mixtures cyclopentane + cyclohexane and + cyclooctane; cyclohexane + cycloheptane, + cyclooctane, + methylcyclohexane, + n-hexane, + n-heptane, + n-octane, + i-octane, + benzene, + toluene, + ethylbenzene, + p-xylene, and + propylbenzene; methylcyclohexane + n-hexane, + i-octane, and + benzene; and cyclooctane + benzene have been reported at 303.15 K over the entire range of composition. The viscosity deviations ?? and excess Gibbs energy of activation ?G*E of viscous flow based on Eyring's theory have been calculated. The effects of molecular sizes and shapes of the component molecules and of interaction energy in the mixture have been discussed. The viscosity data have been correlated with the equations of Grunberg and Nissan, Hind, McLaughlin and Ubbelohde, Tamura and Kurata, Katti and Chaudhri, McAllister, Heric and Brewer, and of Auslaender.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isentropic compressibilities ?S, and excess isentropic compressibilities ?SE have been determined from measurements of speeds of sound u and densities ? of 14 binary mixtures of triethylamine (TEA) and tri-n-butylamine (TBA) with n-hexane, n-octane, iso-octane, n-propylamine, n-butylamine, n-hexylamine and n-octylamine. The relative magnitude and sign of ?SE have been interpreted in terms of molecular interactions and interstitial accommodation. The values of ?SE for TEA + alkane are positive while for TBA + alkane are negative. The values of ?SE for TEA + primary amine become progressively less positive and eventually to negative with the increase in chain length of alkylamine. In case of TBA + primary amine, the values of ?SE increase from n-propylamine to n-butylamine, and then decrease with chain length of primary amine. The experimental speeds of sound u have been analyzed in terms of collision factor theory, free length theory and Prigogine–Flory–Patterson statistical theory of solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isentropic compressibilities, Rao's molar sound functions, molar refractions, excess isentropic compressibilities, excess molar volumes, viscosity deviations and excess Gibbs energies of activation of viscous flow for seven binary mixtures of tetrahydrofuran (THF) with cyclohexane, methylcyclohexane, n-hexane, benzene, toluene, p-xylene and propylbenzene over the entire range of composition at 303.15 K have been derived from experimental densities, speeds of sound, refractive indices and viscosities. The excess partial molar volumes of THF in different solvents have been estimated. The experimental results have been analyzed in terms of the Prigogine–Flory–Patterson theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Speeds of sound u, isentropic compressibilities ?S, viscosities ?, excess isentropic compressibilities ?SE, excess molar volumes VE, viscosity deviations ??, and excess Gibbs energies of activation ?G*E of viscous flow have been investigated for six binary mixtures of diethyl malonate, diethyl bromomalonate, and ethyl chloroacetate with tetra- and trichloromethane at 303.15 K. The values of ?SE, VE, ??, and ?G*E are highly dependent on the type of components involved and the composition curves are unsymmetrical. The results obtained for viscosity of binary mixtures were used to test the semi-empirical relations of Grunberg-Nissan, Tamura-Kurata, Hind-McLaughlin-Ubbelohde, Katti-Chaudhri, McAllister, Heric-Brewer and Auslaender. The experimental speeds of sound have been analyzed in terms of collision factor theory and free length theory of solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ionic liquid (2-hydroxyethylammonium)trimethylammonium) bis(trifluoromethylsulfonyl)imide (choline bistriflimide) was obtained as a supercooled liquid at room temperature (melting point = 30 degrees C). Crystals of choline bistriflimide suitable for structure determination were grown from the melt in situ on the X-ray diffractometer. The choline cation adopts a folded conformation, whereas the bistriflimide anion exhibits a transoid conformation. The choline cation and the bistriflimide anion are held together by hydrogen bonds between the hydroxyl proton and a sulfonyl oxygen atom. This hydrogen bonding is of importance for the temperature-dependent solubility proper-ties of the ionic liquid. Choline bistriflimide is not miscible with water at room temperature, but forms one phase with water at temperatures above 72 degrees C (equals upper critical solution temperature). H-1 NMR studies show that the hydrogen bonds between the choline cation and the bistriflimide anion are substantially weakened above this temperature. The thermophysical properties of water-choline bistriflimide binary mixtures were furthermore studied by a photopyroelectric technique and by adiabatic scanning calorimetry (ASC). By photothermal analysis, besides highly accurate values for the thermal conductivity and effusivity of choline bistriflimide at 30 degrees C, the detailed temperature dependence of both the thermal conductivity and effusivity of the upper and lower part of a critical water-choline bistriflimide mixture in the neighborhood of the mixing-demixing phase transition could be determined with high resolution and accuracy. Together with high resolution ASC data for the heat capacity, experimental values were obtained for the critical exponents alpha and beta, and for the critical amplitude ratio G(+)/G(-). These three values were found to be consistent with theoretical expectations for a three dimensional Ising-type of critical behavior of binary liquid mixtures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental data are presented for liquid-liquid equilibria of mixtures of the room-temperature ionic liquid 1-ethyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide ([C2MIM][NTf2]) with the three alcohols propan-1-ol, butan-1-ol, and pentan-1-ol and for the 1-butyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl) imide ([C4MIM][NTf2]) with cyclohexanol and 1,2-hexanediol in the temperature range of 275 K to 345 K at ambient pressure. The synthetic method has been used. Cloud points at a given composition were observed by varying the temperature and using light scattering to detect the phase splitting. In addition, the influence of small amounts of water on the demixing temperatures of binary mixtures of [C2MIM][NTf2] and propan-1-ol, butan-1-ol, and pentan-1-ol was investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a study on the phase equilibrium behaviour of binary mixtures containing two 1-alkyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide-based ionic liquids, [Cnmim] [NTf2] (n=2 and 4), mixed with diethylamine or triethylamine as a function of temperature and composition using different experimental techniques. Based on this work, two systems showing an LCST and one system with a possible hourglass shape are measured. Their phase behaviours are then correlated and predicted by using Flory–Huggins equations and the UNIQUAC method implemented in Aspen. The potential of the COSMO-RS methodology to predict the phase equilibria was also tested for the binary systems studied. However, this methodology is unable to predict the trends obtained experimentally, limiting its use for systems involving amines in ionic liquids. The liquid-state structure of the binary mixture ([C2mim] [NTf2]+diethylamine) is also investigated by molecular dynamics simulation and neutron diffraction. Finally, the absorption of gaseous ethane by the ([C2mim][NTf2]+diethylamine) binary mixture is determined and compared with that observed in the pure solvents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study highlights the potential associated with utilising multi-component polymeric gels to formulate materials that possess unique rheological and mechanical properties. The synergistic effect* and interaction between hydroxyethylcellulose (HEC) and sodium carboxymethylcellulose (NaCMC), polymers which are commonly employed as drug delivery platforms for implantable medical devices (1), have been determined using dynamic, continuous shear and texture profile analysis. * The difference between the actual response of a binary mixture and the sum of the two components comprising the mixture Increases in polymer concentration resulted in an increase in G', G? and ?' whereas tan d decreased. Similarly, significant increases were also apparent in continuous shear and texture analysis. All binary mixtures showed positive synergy values which may suggest associative interaction between the two components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In most granulation processes involving processing of a mixture of powders, the powders have comparable densities and similar particle size distributions. Granulation of powders with large variation differences in powder densities is usually avoided due problems such as particle segregation. The granular product being designed in this work required the use of two different powders namely limestone and teawaste; these materials have different bulk and particle densities.The overall aim of the project was to obtain a granular product in
the size range 2 to 4mm. The two powders were granulated in different proportions using carboxymethyl cellose (CMC) as the binder. The effect of amount of binder added, relative composition of the powder, and type of tea wasted on the product yield was studied. The results show that the optimum product yield was a function of both relative powder composition and the amount of binder used; increasing the composition of teawaste in the powder increased the amount of binder required for successful granulation.Increasing the mass fraction of teawaste in the powder mix must be accompanied by an increase in the amount of binder to achieve the desired product yield. It was found that attrition losses decreased with increasing binder content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure and dynamics of the common polysaccharide dextran have been investigated in mixed solvents at two different temperatures using small-angle X-ray scattering (SAXS) and viscosity measurements. More specifically, binary mixtures of a good solvent (water, formamide, dimethylsulfoxide, ethanolamine) and the bad solvent ethanol as the minority component have been considered. The experimentally observed effects on the polymer conformation (intrinsic viscosity, coil radius, and radius of gyration) of the bad solvent addition are discussed in terms of hydrogen bonding density and are correlated with the Hansen solubility parameters and the surface tension of the solvent mixtures. Hydrogen bonding appears to be an important contributor to the solubility of dextran but is not sufficient to capture the dextran coil contraction in the mixtures of good+bad solvents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The granular product being designed in this work required the use of two different powders namely limestone and teawaste; these materials have different bulk and particle densities. The overall aim of the project was to obtain a granular product in the size range of 2 to 4. mm. The two powders were granulated in different proportions using carboxymethylcellulose (CMC) as the binder. The effect of amount of binder added, relative composition of the powder, and type of teawaste on the product yield was studied. The results show that the optimum product yield was a function of both relative powder composition and the amount of binder used; increasing the composition of teawaste in the powder increased the amount of binder required for successful granulation. An increase in the mass fraction of teawaste in the powder mix must be accompanied by an increase in the amount of binder to maintain the desired product yield.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A complete review of the published data on the mixing enthalpies of mixtures containing ionic liquids, measured directly using calorimetric techniques, is presented in this paper. The field of ionic liquids is very active and a number of research groups in the world are dealing with different applications of these fluids in the fields of chemistry, chemical engineering, energy, gas storage and separation or materials science. In all these fields, the knowledge of the energetics of mixing is capital both to understand the interactions between these fluids and the different substrates and also to establish the energy and environmental cost of possible applications. Due to the relative novelty of the field, the published data is sometimes controversial and recent reviews are fragmentary and do not represent a set of reliable data. This fact can be attributed to different reasons: (i) difficulties in controlling the purity and stability of the ionic liquid samples; (ii) availability of accurate experimental techniques, appropriate for the measurement of viscous, charged, complex fluids; and (iii) choice of an appropriate clear thermodynamic formalism to be used by an interdisciplinary scientific community. In this paper, we address all these points and propose a critical review of the published data, advise on the most appropriate apparatus and experimental procedure to measure this type of physical-chemical data in ionic liquids as well as the way to treat the information obtained by an appropriate thermodynamic formalism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract The development of high voltage electrolytes is one of the key aspects for increasing both energy and power density of electrochemical double layer capacitors (EDLCs). The usage of blends of ionic liquids and organic solvents has been considered as a feasible strategy since these electrolytes combine high usable voltages and good transport properties at the same time. In this work, the ionic liquid 1-butyl-1-methylpyrrolidinium bis{(trifluoromethyl)sulfonyl}imide ([Pyrr14][TFSI]) was mixed with two nitrile-based organic solvents, namely butyronitrile and adiponitrile, and the resulting blends were investigated regarding their usage in electrochemical double layer capacitors. Both blends have a high electrochemical stability, which was confirmed by prolonged float tests at 3.2 V, as well as, good transport properties. In fact, the butyronitrile blend reaches a conductivity of 17.14 mS·cm−1 and a viscosity of 2.46 mPa·s at 20 °C, which is better than the state-of-the-art electrolyte (1 mol·dm−3 of tetraethylammonium tetrafluoroborate in propylene carbonate).