14 resultados para BACTERICIDAL ACTIVITY

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mammalian group-II phospholipases A2 (PLA2) of inflammatory fluids display bactericidal properties, which are dependent on their enzymatic activity. This study shows that myotoxins II (Lys49) and III (Asp49), two group-II PLA2 isoforms from the venom of Bothrops asper, are lethal to a broad spectrum of bacteria. Since the catalytically inactive Lys49 myotoxin II isoform has similar bactericidal effects to its catalytically active Asp49 counterpart, a bactericidal mechanism that is independent of an intrinsic PLA2 activity is demonstrated. Moreover, a synthetic 13-residue peptide of myotoxin II, comprising residues 115-129 (common numbering system) near the C-terminal loop, reproduced the bactericidal effect of the intact protein. Following exposure to the peptide or the protein, accelerated uptake of the hydrophobic probe N-phenyl-N-naphthylamine was observed in susceptible but not in resistant bacteria, indicating that the lethal effect was initiated on the bacterial membrane. The outer membrane, isolated lipopolysaccharide (LPS), and lipid A of susceptible bacteria showed higher binding to the myotoxin II-(115-129)-peptide than the corresponding moieties of resistant strains. Bacterial LPS chimeras indicated that LPS is a relevant target for myotoxin II-(115-129)-peptide. When heterologous LPS of the resistant strain was present in the context of susceptible bacteria, the chimera became resistant, and vice versa. Myotoxin II represents a group-II PLA2 with a direct bactericidal effect that is independent of an intrinsic enzymatic activity, but adscribed to the presence of a short cluster of basic/hydrophobic amino acids near its C-terminal loop.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ethnopharmacological relevance: The ethnobotanical use of Aframomum melegueta in the treatment of urinary tract and soft tissue infection suggested that the plant has antimicrobial activity.

Materials and methods: To substantiate the folkloric claims, an acetone, 50:50 acetone:methanol and 2:1 chloroform:methanol extracts were tested against Escherichia coli K12; acetone extract and the fractions of acetone extracts were tested against Listeria monocytogenes. Bioassay-guided fractionation was performed on the extract using L. monocytogenes as the test organism to isolate the bioactive compounds which were then tested against all the other organisms.

Results: Four known labdane diterpenes (G3 and G5) were isolated for the first time from the rhizomes of A. melegueta and purified. These were tested against E. coli, L. monocytogenes, methicillin resistant Staphylococus aureus (MRSA) and S. aureus to determine antibacterial activity. The result showed that two compounds G3 and G5 exhibited more potent antibacterial activity compared to the current clinically used antibiotics ampicillin, gentamicin and vancomycin and can be potential antibacterial lead compounds. The structure of the labdane diterpenes were elucidated using nuclear magnetic resonance (NMR) spectroscopy and Mass spectrometry. A possible mode of action of the isolated compound G3 and its potential cytotoxicity towards mammalian cells were also discussed.

Conclusion: The results confirmed the presence of antibacterial compounds in the rhizomes of A. melegueta with a favourable toxicity profile which could be further optimized as antibacterial lead compounds.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The susceptibility of Staphylococcus aureus [meticillin-resistant (MRSA) and meticillin-sensitive (MSSA)] and coagulase-negative staphylococci (CoNS), which respectively form part of the transient and commensal skin flora, to tea-tree oil (TTO) was compared using broth microdilution and quantitative in vitro time-kill test methods. MRSA and MSSA isolates were significantly less susceptible than CoNS isolates, as measured by both MIC and minimum bactericidal concentration. A significant decrease in the mean viable count of all isolates in comparison with the control was seen at each time interval in time-kill assays. However, the only significant difference in the overall mean log(10) reduction in viable count between the groups of isolates was between CoNS and MSSA at 3 h, with CoNS isolates demonstrating a significantly lower mean reduction. To provide a better simulation of in vivo conditions on the skin, where bacteria are reported to grow as microcolonies encased in glycocalyx, the bactericidal activity of TTO against isolates grown as biofilms was also compared. Biofilms formed by MSSA and MRSA isolates were completely eradicated following exposure to 5 % TTO for 1 h. In contrast, of the biofilms formed by the nine CoNS isolates tested, only five were completely killed, although a reduction in viable count was apparent for the other four isolates. These results suggest that TTO exerts a greater bactericidal activity against biofilm-grown MRSA and MSSA isolates than against some biofilm-grown CoNS isolates.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Candidal species, particularly Candida albicans are common pathogens in the oral cavity and perioral region. Many of the manifestations of candidiasis are associated with the formation of Candida biofilms on host surfaces and/or implanted biomaterials. Biofilms are clinically important due to their increased resistance to therapeutic intervention and the ability of cells within the biofilm to withstand host immune defences.
Objectives: The present study was designed to investigate the antifungal activity of two peptides found in skin secretions of the African volcano frog (Xenopus amieti) against the type strain of C. albicans NCTC 3179.
Methods: The antifungal activity of magainin-AM1 and peptide glycine-leucine-amide (PGLa-AM1) against C. albicans NCTC 3179 was studied in both planktonic and biofilm forms. Radial diffusion assays were used to obtain the minimum inhibitory concentration (MIC) of magainin-AM1 and PGLa-AM1 against planktonic C. albicans. Time kill assays were used to determine the time dependent fungicidal action of the peptides at both 4oC and 37oC. A 96 well microtitre plate model for candidal biofilm formation was employed to study the ability of the peptides to disrupt the early biofilm development (up to 24 hours) compared with the antifungal drug fluconazole. Biofilm formation was determined quantitatively using the crystal violet assay.
Results: Both magainin-AM1 and PGLa-AM1 demonstrated inhibitory activity against Candida albicans, with MIC values of 24.3 uM and 7.5uM respectively. Time-kill assays revealed bactericidal activity of both peptides at 37oC and 4oC. Magainin-AM1 and PGLa-AM1 inhibited biofilm formation in microtitre plate assays. The peptides were particularly effective during early biofilm establishment when compared with fluconazole treatment.
Conclusions: Magainin-AM1 and PGLa-AM1 are active against C albicans in both planktonic and biofilm forms. Further testing of this peptide family against candidal biofilms is recommended.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study aimed to determine if Photodynamic Antimicrobial Chemotherapy (PACT) was effective in the treatment of Burkholderia cepacia complex infection and whether a synergistic effect was evident if PACT was used in combination with antibiotics. The susceptibility of both planktonic and biofilm cultures of B. cepacia complex strains to methylene blue (MB) and meso-tetra(n-methyl-4-pyridyl)porphine tetra-tosylate (TMP)-mediated PACT was determined alone and in combination with antibiotics used in the treatment of Cystic Fibrosis pulmonary infection caused by these bacteria. When B. cepacia complex strains were grown planktonically, high levels of kill of were achieved with both TMP and MB-mediated PACT with strain and photosensitizer specific differences apparent. When strains were grown in biofilm, antibiotic treatment alone was bactericidal in 17/36 (47%) strain/antibiotic combinations tested. When antibiotic treatment was combined with PACT, bactericidal activity was apparent for 33/36 (92%) strain/antibiotic combinations. No antagonism was detected between PACT and antibiotic treatment with the combination synergistic for 6/36 (17%) and indifferent for 30/36 (83%) strain/antibiotic combinations. PACT could be a viable treatment option, either alone or in combination with antibiotics for treatment of B. cepacia complex pulmonary infection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bacteria exist, in most environments, as complex, organised communities of sessile cells embedded within a matrix of self-produced, hydrated extracellular polymeric substances known as biofilms. Bacterial biofilms represent a ubiquitous and predominant cause of both chronic infections and infections associated with the use of indwelling medical devices such as catheters and prostheses. Such infections typically exhibit significantly enhanced tolerance to antimicrobial, biocidal and immunological challenge. This renders them difficult, sometimes impossible, to treat using conventional chemotherapeutic agents. Effective alternative approaches for prevention and eradication of biofilm associated chronic and device-associated infections are therefore urgently required. Atmospheric pressure non-thermal plasmas are gaining increasing attention as a potential approach for the eradication and control of bacterial infection and contamination. To date, however, the majority of studies have been conducted with reference to planktonic bacteria and rather less attention has been directed towards bacteria in the biofilm mode of growth. In this study, the activity of a kilohertz-driven atmospheric pressure non-thermal plasma jet, operated in a helium oxygen mixture, against Pseudomonas aeruginosa in vitro biofilms was evaluated. Pseudomonas aeruginosa biofilms exhibit marked susceptibility to exposure of the plasma jet effluent, following even relatively short (~10's s) exposure times. Manipulation of plasma operating conditions, for example, plasma operating frequency, had a significant effect on the bacterial inactivation rate. Survival curves exhibit a rapid decline in the number of surviving cells in the first 60 seconds followed by slower rate of cell number reduction. Excellent anti-biofilm activity of the plasma jet was also demonstrated by both confocal scanning laser microscopy and metabolism of the tetrazolium salt, XTT, a measure of bactericidal activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Antimicrobial peptides (APs) are important host weapons against infections. Nearly all APs are cationic and their microbicidal action is initiated through interactions with the anionic bacterial surface. It is known that pathogens have developed countermeasures to resist these agents by reducing the negative charge of membranes, by active efflux and by proteolytic degradation. Here we uncover a new strategy of resistance based on the neutralization of the bactericidal activity of APs by anionic bacterial capsule polysaccharide (CPS). Purified CPSs from Klebsiella pneumoniae K2, Streptococcus pneumoniae serotype 3 and Pseudomonas aeruginosa increased the resistance to polymyxin B of an unencapsulated K. pneumoniae mutant. Furthermore, these CPSs increased the MICs of polymyxin B and human neutrophil alpha-defensin 1 (HNP-1) for unencapsulated K. pneumoniae, Escherichia coli and P. aeruginosa PAO1. Polymyxin B or HNP-1 released CPS from capsulated K. pneumoniae, S. pneumoniae serotype 3 and P. aeruginosa overexpressing CPS. Moreover, this material also reduced the bactericidal activity of APs. We postulate that APs may trigger in vivo the release of CPS, which in turn will protect bacteria against APs. We found that anionic CPSs, but not cationic or uncharged ones, blocked the bactericidal activity of APs by binding them, thereby reducing the amount of peptides reaching the bacterial surface. Supporting this, polycations inhibited such interaction and the bactericidal activity was restored. We postulate that trapping of APs by anionic CPSs is an additional selective virulence trait of these molecules, which could be considered as bacterial decoys for APs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The response of granulocyte-macrophage progenitor cells (in vitro colony-forming cells) and of colony-stimulating (CS) factor in serum were studied in mice infected intraperitoneally with 10(3) viable Salmonella typhimurium. Increases in the number of colony-forming cells in marrow and spleen and increases in the serum level of CS factor occurred during the infection. There was no evidence to suggest that progressive infection was associated with failure of macrophage production. Medium rich in CS factor increased the bactericidal activity of macrophages in vitro and it was suggested that CS factor could be involved in macrophage activation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE:
This study aimed to investigate antimicrobial treatment of an infected cochlear implant, undertaken in an attempt to salvage the infected device.

METHODS:
We used the broth microdilution method to assess the susceptibility of meticillin-sensitive Staphylococcus aureus isolate, cultured from an infected cochlear implant, to common antimicrobial agents as well as to novel agents such as tea tree oil. To better simulate in vivo conditions, where bacteria grow as microcolonies encased in glycocalyx, the bactericidal activity of selected antimicrobial agents against the isolate growing in biofilm were also compared.

RESULTS:
When grown planktonically, the S aureus isolate was susceptible to 17 of the 18 antimicrobials tested. However, when grown in biofilm, it was resistant to all conventional antimicrobials. In contrast, 5 per cent tea tree oil completely eradicated the biofilm following exposure for 1 hour.

CONCLUSION:
Treatment of infected cochlear implants with novel agents such as tea tree oil could significantly improve salvage outcome.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Constant exposure to a wide variety of microbial pathogens represents a major challenge for our skin. Antimicrobial peptides (AMPs) are mediators of cutaneous innate immunity and protect primarily against microbial infections. Cathelicidins were among the first AMPs identified in human skin and recent evidence suggests that they exert a dual role in innate immune defense: At first, due to their antimicrobial activity they kill pathogens directly. In addition, these peptides initiate a potent host response to infection resulting in cytokine release, inflammation and a cellular response. Disturbed cathelicidin expression and function was observed in several common inflammatory skin diseases, such as psoriasis where cathelicidin peptide converts inert self-DNA and self-RNA into an autoimmune stimulus. In atopic dermatitis decreased levels of cathelicidin facilitating microbial superinfections have been discussed. Furthermore, abnormally processed cathelicidin peptides induce inflammation and a vascular response in rosacea. Until recently, the molecular mechanisms underlying cathelicidin regulation were unknown. Recently, the vitamin D3 pathway was identified as the major regulator of cathelicidin expression. Consequently, vitamin D3 entered the spotlight as an immune modulator with impact on both innate and adaptive immunity. Therapies targeting vitamin D3 signaling may provide new approaches for infectious and inflammatory skin diseases by affecting both innate and adaptive immune functions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

TiO2 photocatalysis has demonstrated efficacy as a treatment process for water contaminated with chemical pollutants. When exposed to UVA light TiO2 also demonstrates an effective bactericidal activity. The mechanism of this process has been reported to involve attack by valence band generated hydroxyl radicals. In this study when three common bacterial pathogens, Escherichia coli, Salmonella enterica serovar Enteritidis and Pseudomonas aeruginosa, were exposed to TiO2 and UVA light a substantial decrease in bacterial numbers was observed. Control experiments in which all three pathogens were exposed to UVA light only resulted in a similar reduction in bacterial numbers. Moreover, exposure to UVA light alone resulted in the production of a smaller than average colony phenotype among the surviving bacteria, for all three pathogens examined, a finding which was not observed following treatment with UVA and TiO2. Small slow growing colonies have been described for several pathogenic bacteria and are referred to as small colony variants. Several studies have demonstrated an association between small colony variants and persistent, recurrent and antibiotic resistant infections. We propose that the production of small colony variants of pathogenic bacteria following UVA treatment of drinking water may represent a health hazard. As these small colony variants were not observed with the UVA/TiO2 system this potential hazard is not a risk when using this technology. It would also appear that the bactericidal mechanism is different with the UVA/TiO2 process compared to when UVA light is used alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seven ethnobotanically selected medicinal plants were screened for their antimycobacterial activity. The mininium inhibitory concentration (MIC) of four plants namely Artemisia afra, Dodonea angustifolia, Drosera capensis and Galenia africana ranged from 0.781 to 6.25 mg/mL against Mycobacterium smegmatis. G. africana showed the best activity exhibiting an MIC of 0.78 mg/mL and a minimum bactericidal concentration (MBC) of 1.56 mg/mL. The MICs of ethanol extracts of A angustifolia and G. africana against M. tuberculosis were found to be 5.0 and 1.2 mg/mL respectively. The mammalian cytotoxicity IC50 value of the most active antimycobacterial extract, from G. africana, was found to be 101.3 mu g/mL against monkey kidney Vero cells. Since the ethanol G. africana displayed the best antimycobacterial activity, it was subjected to fractionation which led to the isolation of a flavone, 5,7,2'-trihydroxyflavone. The MIC of this compound was found to be 0.031 mg/mL against M. smegmatis and 0.10 mg/mL against M. tuberculosis. This study gives some scientific basis to the 14 traditional use of these plants for TB-related symptoms. Copyright (C) 2008 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The emergence of multidrug-resistant pathogens within the clinical environment is presenting a mounting problem in hospitals worldwide. The 'ESKAPE' pathogens (Enterococcusfaecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) have been highlighted as a group of causative organisms in a majority of nosocomial infections, presenting a serious health risk due to widespread antimicrobial resistance. The stagnating pipeline of new antibiotics requires alternative approaches to the control and treatment of nosocomial infections. Atmospheric pressure nonthermal plasma (APNTP) is attracting growing interest as an alternative infection control approach within the clinical setting. This study presents a comprehensive bactericidal assessment of an in-house-designed APNTP jet both against biofilms and planktonic bacteria of the ESKAPE pathogens. Standard plate counts and the XTT metabolic assay were used to evaluate the antibacterial effect of APNTP, with both methods demonstrating comparable eradication times. APNTP exhibited rapid antimicrobial activity against all of the ESKAPE pathogens in the planktonic mode of growth and provided efficient and complete eradication of ESKAPE pathogens in the biofilm mode of growth within 360 s, with the exception of A. baumannii where a >4log reduction in biofilm viability was observed. This demonstrates its effectiveness as a bactericidal treatment against these pathogens and further highlights its potential application in the clinical environment for the control of highly antimicrobial-resistant pathogens.