6 resultados para Attribute-based

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different economic valuation methodologies can be used to value the non-market benefits of an agri-environmental scheme. In particular, the non-market value can be examined by assessing the public's willingness to pay for the policy outputs as a whole or by modelling the preferences of society for the component attributes of the rural landscape that result from the implementation of the policy. In this article we examine whether the welfare values estimated for an agri-environmental policy are significantly different between an holistic valuation methodology (using contingent valuation) and an attribute-based valuation methodology (choice experiment). It is argued that the valuation methodology chosen should be based on whether or not the overall objective is the valuation of the agri-environment policy package in its entirety or the valuation of each of the policy's distinct environmental outputs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a recently published study, Sloutsky and Fisher [Sloutsky, V. M., & Fisher, A.V. (2004a). When development and learning decrease memory: Evidence against category-based induction in children. Psychological Science, 15, 553-558; Sloutsky, V. M., & Fisher, A. V. (2004b). Induction and categorization in young children: A similarity-based model. Journal of Experimental Psychology: General, 133, 166-188.] demonstrated that children have better memory for the items that they generalise to than do adults. On the basis of this finding, they claim that children and adults use different mechanisms for inductive generalisations;whereas adults focus on shared category membership, children project properties on the basis of perceptual similarity. Sloutsky & Fisher attribute children's enhanced recognition memory to the more detailed processing required by this similarity-based mechanism. In Experiment I we show that children look at the stimulus items for longer than adults. In Experiment 2 we demonstrate that although when given just 250 ms to inspect the items children remain capable of making accurate inferences, their subsequent memory for those items decreases significantly. These findings suggest that there are no necessary conclusions to be drawn from Sloutsky & Fisher's results about developmental differences in generalisation strategy. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-market effects of agriculture are often estimated using discrete choice models from stated preference surveys. In this context we propose two ways of modelling attribute non-attendance. The first involves constraining coefficients to zero in a latent class framework, whereas the second is based on stochastic attribute selection and grounded in Bayesian estimation. Their implications are explored in the context of a stated preference survey designed to value landscapes in Ireland. Taking account of attribute non-attendance with these data improves fit and tends to involve two attributes one of which is likely to be cost, thereby leading to substantive changes in derived welfare estimates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autonomous agents may encapsulate their principals' personal data attributes. These attributes may be disclosed to other agents during agent interactions, producing a loss of privacy. Thus, agents need self-disclosure decision-making mechanisms to autonomously decide whether disclosing personal data attributes to other agents is acceptable or not. Current self-disclosure decision-making mechanisms consider the direct benefit and the privacy loss of disclosing an attribute. However, there are many situations in which the direct benefit of disclosing an attribute is a priori unknown. This is the case in human relationships, where the disclosure of personal data attributes plays a crucial role in their development. In this paper, we present self-disclosure decision-making mechanisms based on psychological findings regarding how humans disclose personal information in the building of their relationships. We experimentally demonstrate that, in most situations, agents following these decision-making mechanisms lose less privacy than agents that do not use them. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increased interconnectivity and complexity of supervisory control and data acquisition (SCADA) systems in power system networks has exposed the systems to a multitude of potential vulnerabilities. In this paper, we present a novel approach for a next-generation SCADA-specific intrusion detection system (IDS). The proposed system analyzes multiple attributes in order to provide a comprehensive solution that is able to mitigate varied cyber-attack threats. The multiattribute IDS comprises a heterogeneous white list and behavior-based concept in order to make SCADA cybersystems more secure. This paper also proposes a multilayer cyber-security framework based on IDS for protecting SCADA cybersecurity in smart grids without compromising the availability of normal data. In addition, this paper presents a SCADA-specific cybersecurity testbed to investigate simulated attacks, which has been used in this paper to validate the proposed approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the most popular techniques of generating classifier ensembles is known as stacking which is based on a meta-learning approach. In this paper, we introduce an alternative method to stacking which is based on cluster analysis. Similar to stacking, instances from a validation set are initially classified by all base classifiers. The output of each classifier is subsequently considered as a new attribute of the instance. Following this, a validation set is divided into clusters according to the new attributes and a small subset of the original attributes of the instances. For each cluster, we find its centroid and calculate its class label. The collection of centroids is considered as a meta-classifier. Experimental results show that the new method outperformed all benchmark methods, namely Majority Voting, Stacking J48, Stacking LR, AdaBoost J48, and Random Forest, in 12 out of 22 data sets. The proposed method has two advantageous properties: it is very robust to relatively small training sets and it can be applied in semi-supervised learning problems. We provide a theoretical investigation regarding the proposed method. This demonstrates that for the method to be successful, the base classifiers applied in the ensemble should have greater than 50% accuracy levels.