18 resultados para Asymptotic Mean Squared Errors
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The analysis of chironomid taxa and environmental datasets from 46 New Zealand lakes identified temperature (February mean air temperature) and lake production (chlorophyll a (Chl a)) as the main drivers of chironomid distribution. Temperature was the strongest driver of chironomid distribution and consequently produced the most robust inference models. We present two possible temperature transfer functions from this dataset. The most robust model (weighted averaging-partial least squares (WA-PLS), n = 36) was based on a dataset with the most productive (Chl a > 10 lg l)1) lakes removed. This model produced a coefficient of determination (r2 jack) of 0.77, and a root mean squared error of prediction (RMSEPjack) of 1.31C. The Chl a transfer function (partial least squares (PLS), n = 37) was far less reliable, with an r2 jack of 0.49 and an RMSEPjack of 0.46 Log10lg l)1. Both of these transfer functions could be improved by a revision of the taxonomy for the New Zealand chironomid taxa, particularly the genus Chironomus. The Chironomus morphotype was common in high altitude, cool, oligotrophic lakes and lowland, warm, eutrophic lakes. This could reflect the widespread distribution of one eurythermic species, or the collective distribution of a number of different Chironomus species with more limited tolerances. The Chl a transfer function could also be improved by inputting mean Chl a values into the inference model rather than the spot measurements that were available for this study.
Resumo:
The authors propose a three-node full diversity cooperative protocol, which allows the retransmission of all symbols. By allowing multiple nodes to transmit simultaneously, relaying transmission only consumes limited bandwidth resource. To facilitate the performance analysis of the proposed cooperative protocol, the lower and upper bounds of the outage probability are first developed, and then the high signal-to-noise ratio behaviour is studied. Our analytical results show that the proposed strategy can achieve full diversity. To achieve the performance gain promised by the cooperative diversity, at the relays decode-and-forward strategy is adopted and an iterative soft-interference-cancellation minimum mean-squared error equaliser is developed. The simulation results compare the bit-error-rate performance of the proposed protocol with the non-cooperative scheme and the scheme presented by Azarian et al. ( 2005).
Resumo:
This paper presents a feature selection method for data classification, which combines a model-based variable selection technique and a fast two-stage subset selection algorithm. The relationship between a specified (and complete) set of candidate features and the class label is modelled using a non-linear full regression model which is linear-in-the-parameters. The performance of a sub-model measured by the sum of the squared-errors (SSE) is used to score the informativeness of the subset of features involved in the sub-model. The two-stage subset selection algorithm approaches a solution sub-model with the SSE being locally minimized. The features involved in the solution sub-model are selected as inputs to support vector machines (SVMs) for classification. The memory requirement of this algorithm is independent of the number of training patterns. This property makes this method suitable for applications executed in mobile devices where physical RAM memory is very limited. An application was developed for activity recognition, which implements the proposed feature selection algorithm and an SVM training procedure. Experiments are carried out with the application running on a PDA for human activity recognition using accelerometer data. A comparison with an information gain based feature selection method demonstrates the effectiveness and efficiency of the proposed algorithm.
Resumo:
In this paper we investigate the influence of a power-law noise model, also called noise, on the performance of a feed-forward neural network used to predict time series. We introduce an optimization procedure that optimizes the parameters the neural networks by maximizing the likelihood function based on the power-law model. We show that our optimization procedure minimizes the mean squared leading to an optimal prediction. Further, we present numerical results applying method to time series from the logistic map and the annual number of sunspots demonstrate that a power-law noise model gives better results than a Gaussian model.
Resumo:
The motivation for this paper is to present an approach for rating the quality of the parameters in a computer-aided design model for use as optimization variables. Parametric Effectiveness is computed as the ratio of change in performance achieved by perturbing the parameters in the optimum way, to the change in performance that would be achieved by allowing the boundary of the model to move without the constraint on shape change enforced by the CAD parameterization. The approach is applied in this paper to optimization based on adjoint shape sensitivity analyses. The derivation of parametric effectiveness is presented for optimization both with and without the constraint of constant volume. In both cases, the movement of the boundary is normalized with respect to a small root mean squared movement of the boundary. The approach can be used to select an initial search direction in parameter space, or to select sets of model parameters which have the greatest ability to improve model performance. The approach is applied to a number of example 2D and 3D FEA and CFD problems.
Resumo:
Shapememoryalloy (SMA) actuators, which have the ability to return to a predetermined shape when heated, have many potential applications in aeronautics, surgical tools, robotics and so on. Nonlinearity hysteresis effects existing in SMA actuators present a problem in the motion control of these smart actuators. This paper investigates the control problem of SMA actuators in both simulation and experiment. In the simulation, the numerical Preisachmodel with geometrical interpretation is used for hysteresis modeling of SMA actuators. This model is then incorporated in a closed loop PID control strategy. The optimal values of PID parameters are determined by using geneticalgorithm to minimize the mean squared error between desired output displacement and simulated output. However, the control performance is not good compared with the simulation results when these parameters are applied to the real SMA control since the system is disturbed by unknown factors and changes in the surrounding environment of the system. A further automated readjustment of the PID parameters using fuzzylogic is proposed for compensating the limitation. To demonstrate the effectiveness of the proposed controller, real time control experiment results are presented.
Resumo:
A study combining high resolution mass spectrometry (liquid chromatography-quadrupole time-of-flight-mass spectrometry, UPLC-QTof-MS) and chemometrics for the analysis of post-mortem brain tissue from subjects with Alzheimer’s disease (AD) (n = 15) and healthy age-matched controls (n = 15) was undertaken. The huge potential of this metabolomics approach for distinguishing AD cases is underlined by the correct prediction of disease status in 94–97% of cases. Predictive power was confirmed in a blind test set of 60 samples, reaching 100% diagnostic accuracy. The approach also indicated compounds significantly altered in concentration following the onset of human AD. Using orthogonal partial least-squares discriminant analysis (OPLS-DA), a multivariate model was created for both modes of acquisition explaining the maximum amount of variation between sample groups (Positive Mode-R2 = 97%; Q2 = 93%; root mean squared error of validation (RMSEV) = 13%; Negative Mode-R2 = 99%; Q2 = 92%; RMSEV = 15%). In brain extracts, 1264 and 1457 ions of interest were detected for the different modes of acquisition (positive and negative, respectively). Incorporation of gender into the model increased predictive accuracy and decreased RMSEV values. High resolution UPLC-QTof-MS has not previously been employed to biochemically profile post-mortem brain tissue, and the novel methods described and validated herein prove its potential for making new discoveries related to the etiology, pathophysiology, and treatment of degenerative brain disorders.
Resumo:
The self-consistent interaction between energetic particles and self-generated hydromagnetic waves in a cosmic ray pressure dominated plasma is considered. Using a three-dimensional hybrid magnetohydrodynamics (MHD)-kinetic code, which utilizes a spherical harmonic expansion of the Vlasov-Fokker-Planck equation, high-resolution simulations of the magnetic field growth including feedback on the cosmic rays are carried out. It is found that for shocks with high cosmic ray acceleration efficiency, the magnetic fields become highly disorganized, resulting in near isotropic diffusion, independent of the initial orientation of the ambient magnetic field. The possibility of sub-Bohm diffusion is demonstrated for parallel shocks, while the diffusion coefficient approaches the Bohm limit from below for oblique shocks. This universal behaviour suggests that Bohm diffusion in the root-mean-squared field inferred from observation may provide a realistic estimate for the maximum energy acceleration time-scale in young supernova remnants. Although disordered, the magnetic field is not self-similar suggesting a non-uniform energy-dependent behaviour of the energetic particle transport in the precursor. Possible indirect radiative signatures of cosmic ray driven magnetic field amplification are discussed.
Resumo:
This paper introduces some novel upper and lower bounds on the achievable sum rate of multiple-input multiple-output (MIMO) systems with zero-forcing (ZF) receivers. The presented bounds are not only tractable but also generic since they apply for different fading models of interest, such as uncorrelated/ correlated Rayleigh fading and Ricean fading. We further formulate a new relationship between the sum rate and the first negative moment of the unordered eigenvalue of the instantaneous correlation matrix. The derived expressions are explicitly compared with some existing results on MIMO systems operating with optimal and minimum mean-squared error (MMSE) receivers. Based on our analytical results, we gain valuable insights into the implications of the model parameters, such as the number of antennas, spatial correlation and Ricean-K factor, on the sum rate of MIMO ZF receivers. © 2011 IEEE.
Resumo:
This paper considers inference from multinomial data and addresses the problem of choosing the strength of the Dirichlet prior under a mean-squared error criterion. We compare the Maxi-mum Likelihood Estimator (MLE) and the most commonly used Bayesian estimators obtained by assuming a prior Dirichlet distribution with non-informative prior parameters, that is, the parameters of the Dirichlet are equal and altogether sum up to the so called strength of the prior. Under this criterion, MLE becomes more preferable than the Bayesian estimators at the increase of the number of categories k of the multinomial, because non-informative Bayesian estimators induce a region where they are dominant that quickly shrinks with the increase of k. This can be avoided if the strength of the prior is not kept constant but decreased with the number of categories. We argue that the strength should decrease at least k times faster than usual estimators do.
Resumo:
In this paper, we investigate an amplify-and-forward (AF) multiple-input multiple-output - spatial division multiplexing (MIMO-SDM) cooperative wireless networks, where each network node is equipped with multiple antennas. In order to deal with the problems of signal combining at the destination and cooperative relay selection, we propose an improved minimum mean square error (MMSE) signal combining scheme for signal recovery at the destination. Additionally, we propose two distributed relay selection algorithms based on the minimum mean squared error (MSE) of the signal estimation for the cases where channel state information (CSI) from the source to the destination is available and unavailable at the candidate nodes. Simulation results demonstrate that the proposed combiner together with the proposed relay selection algorithms achieve higher diversity gain than previous approaches in both flat and frequency-selective fading channels.
Resumo:
We propose a mixed cost-function adaptive initialization algorithm for the time domain equalizer in a discrete multitone (DMT)-based asymmetric digital subscriber line. Using our approach, a higher convergence rate than that of the commonly used least-mean square algorithm is obtained, whilst attaining bit rates close to the optimum maximum shortening SNR and the upper bound SNR. Furthermore, our proposed method outperforms the minimum mean-squared error design for a range of time domain equalizer (TEQ) filter lengths. The improved performance outweighs the small increase in computational complexity required. A block variant of our proposed algorithm is also presented to overcome the increased latency imposed on the feedback path of the adaptive system.
Resumo:
Radio-frequency (RF) impairments, which intimately exist in wireless communication systems, can severely limit the performance of multiple-input-multiple-output (MIMO) systems. Although we can resort to compensation schemes to mitigate some of these impairments, a certain amount of residual impairments always persists. In this paper, we consider a training-based point-to-point MIMO system with residual transmit RF impairments (RTRI) using spatial multiplexing transmission. Specifically, we derive a new linear channel estimator for the proposed model, and show that RTRI create an estimation error floor in the high signal-to-noise ratio (SNR) regime. Moreover, we derive closed-form expressions for the signal-to-noise-plus-interference ratio (SINR) distributions, along with analytical expressions for the ergodic achievable rates of zero-forcing, maximum ratio combining, and minimum mean-squared error receivers, respectively. In addition, we optimize the ergodic achievable rates with respect to the training sequence length and demonstrate that finite dimensional systems with RTRI generally require more training at high SNRs than those with ideal hardware. Finally, we extend our analysis to large-scale MIMO configurations, and derive deterministic equivalents of the ergodic achievable rates. It is shown that, by deploying large receive antenna arrays, the extra training requirements due to RTRI can be eliminated. In fact, with a sufficiently large number of receive antennas, systems with RTRI may even need less training than systems with ideal hardware.
Resumo:
In this paper, we present a hybrid mixed cost-function adaptive initialization algorithm for the time domain equalizer in a discrete multitone (DMT)-based asymmetric digital subscriber loop. Using our approach, a higher convergence rate than that of the commonly used least-mean square algorithm is obtained, whilst attaining bit rates close to the optimum maximum shortening SNR and the upper bound SNR. Moreover, our proposed method outperforms the minimum mean-squared error design for a range of TEQ filter lengths.
Resumo:
This work investigated the differences between multileaf collimator (MLC) positioning accuracy determined using either log files or electronic portal imaging devices (EPID) and then assessed the possibility of reducing patient specific quality control (QC) via phantom-less methodologies. In-house software was developed, and validated, to track MLC positional accuracy with the rotational and static gantry picket fence tests using an integrated electronic portal image. This software was used to monitor MLC daily performance over a 1 year period for two Varian TrueBeam linear accelerators, with the results directly compared with MLC positions determined using leaf trajectory log files. This software was validated by introducing known shifts and collimator errors. Skewness of the MLCs was found to be 0.03 ± 0.06° (mean ±1 standard deviation (SD)) and was dependent on whether the collimator was rotated manually or automatically. Trajectory log files, analysed using in-house software, showed average MLC positioning errors with a magnitude of 0.004 ± 0.003 mm (rotational) and 0.004 ± 0.011 mm (static) across two TrueBeam units over 1 year (mean ±1 SD). These ranges, as indicated by the SD, were lower than the related average MLC positioning errors of 0.000 ± 0.025 mm (rotational) and 0.000 ± 0.039 mm (static) that were obtained using the in-house EPID based software. The range of EPID measured MLC positional errors was larger due to the inherent uncertainties of the procedure. Over the duration of the study, multiple MLC positional errors were detected using the EPID based software but these same errors were not detected using the trajectory log files. This work shows the importance of increasing linac specific QC when phantom-less methodologies, such as the use of log files, are used to reduce patient specific QC. Tolerances of 0.25 mm have been created for the MLC positional errors using the EPID-based automated picket fence test. The software allows diagnosis of any specific leaf that needs repair and gives an indication as to the course of action that is required.