42 resultados para Assortative mating
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
There have been numerous recent observations of changes in the behavior and dynamics of migratory bird populations, but the plasticity of the migratory trait and our inability to track small animals over large distances have hindered investigation of the mechanisms behind migratory change. We used habitat-specific stable isotope signatures to show that recently evolved allopatric wintering populations of European blackcaps Sylvia atricapilla pair assortatively on their sympatric breeding grounds. Birds wintering further north also produce larger clutches and fledge more young. These findings describe an important process in the evolution of migratory divides, new migration routes, and wintering quarters. Temporal segregation of breeding is a way in which subpopulations of vertebrates may become isolated in sympatry.
Resumo:
We used microsatellite DNA markers to identify the putative parents of 69 litters of nine-banded armadillos (Dasypus novemcinctus) over 4 years. Male and female parents did not differ in any measure of body size in comparisons with nonparents. However, males observed paired with a female were significantly larger than unpaired males, although paired females were the same size as unpaired females. Females categorized as possibly lactating were significantly larger than females that were either definitely lactating or definitely not lactating. There was no evidence of assortative mating: body-size measurements of mothers were not significantly correlated with those of fathers. Nine-banded armadillos give birth to litters of genetically identical quadruplets. Mothers (but not fathers) of female litters were significantly larger than mothers of male litters, and maternal (but not paternal) body size was positively correlated with the number of surviving young within years, but not cumulatively. There were no differences in dates of birth between male and female litters, nor were there any significant relationships between birth date and maternal body size. Body size of either parent was not correlated with the body sizes of their offspring. Cumulative and yearly reproductive success did not differ between reproductively successful males and females. Average reproductive success (which included apparently unsuccessful individuals) also did not differ between males and females. The majority of adults in the population apparently failed to produce any surviving offspring, and even those that did usually did so in only 1 of the 4 years. This low reproductive success is unexpected, given the rapid and successful range extension of this species throughout the southeastern United States in this century.
Resumo:
Kin selection models of intracolonial conflict over the maternity of males predict that social hymenopteran workers should favour the production of sons and nephews over brothers when the effective mating frequency (me) of the queen is low (me2. Stingless bees have been used to support these models in that me within the group is considered low and workers are thought often to monopolise the parentage of males. We genetically analysed 20 worker and 20 male pupae from each of 10 colonies of the stingless bee Scaptotrigona postica (= Scaptotrigona aff. depilis) using six microsatellite loci and demonstrate queen monandry in eight nests and apparent low me in the other two. However, four colonies contained an additional matriline, possibly due to queen supersedure (serial polygyny), which complicated their genetic structure. Across colonies, workers were responsible for the maternity of 13% of all males. These data are broadly in agreement with predictions from kin selection theory, though the question remains open as to why workers do not secure a greater share of male maternity in this and other stingless bee species in which workers are more closely related to nephews than brothers.
Resumo:
We present the first empirical test of the timing hypothesis regarding the generation of size-assortative pairing in amphipods. The timing hypothesis proposes that, since large males are better able to afford the costs of mate guarding than small males, the former can take larger females into precopula earlier in the female moult cycle than is feasible for the latter. This leaves small males to form pairs with smaller females closer to moult, thus generating size assortment. We presented male Gammarus pulex, collected both in precopula and as singletons, with females that were (1) previously guarded and therefore near to copulatory moult and (2) previously unguarded and therefore far from copulatory moult. This comparison tested the prediction of the timing hypothesis, that size assortment should break down when the opportunity for time-based male decisions is removed, but that size assortment should occur where timing is not disrupted. Counter to the hypothesis, we found that size assortment did not break down upon removal of the time factor. Large males tended to initiate mate guarding earlier than small males in both female moult groups. However, only in the previously unguarded group did large males guard for longer than small males. This result suggests that, although size assortment occurred in all groups, the causative mechanisms that generated this pattern may differ between these groups. We therefore consider the possible importance of mechanisms such as aggression, simultaneous manipulation of females and female resistance in producing size assortment where males encounter numerous females that are close to moult. We also observed that prior recent guarding experience by males had no effect on latency to guard or size-assortative pairing. (C) 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Considerable interspecific diversity exists among bees in the rendezvous sites where males search for females and in the behaviours employed by males in their efforts to secure matings. I present an evolutionary framework in which to interpret this variation, and highlight the importance for the framework of (i) the distribution of receptive ( typically immediate post-emergence) females, which ordinarily translates into the distribution of nests, and (ii) the density of competing males. Other than the highly polyandrous honey bees ( Apis), most female bees are thought to be monandrous, though genetic data with which to support this view are generally lacking. Given the opportunity, male bees are typically polygamous. I highlight intraspecific diversity in rendezvous site, male behaviour and mating system, which is in part predicted from the conceptual framework. Finally, I suggest that inbreeding may be far more widespread among bees than has hitherto been considered the case.
Resumo:
Insects of the order Hymenoptera are biologically and economically important members of natural and agro ecosystems and exhibit diverse biologies, mating systems, and sex pheromones. We review what is known of their sex pheromone chemistry and function, paying particular emphasis to the Hymenoptera Aculeata (primarily ants, bees, and sphecid and vespid wasps), and provide a framework for the functional classification of their sex pheromones. Sex pheromones often comprise multicomponent blends derived from numerous exocrine tissues, including the cuticle. However, very few sex pheromones have been definitively characterized using bioassays, in part because of the behavioral sophistication of many Aculeata. The relative importance of species isolation versus sexual selection in shaping sex pheromone evolution is still unclear. Many species appear to discriminate among mates at the level of individual or kin/colony, and they use antiaphrodisiacs. Some orchids use hymenopteran sex pheromones to dupe males into performing pseudocopulation, with extreme species specificity.
Resumo:
We examined the trade-off between the behaviours associated with predator avoidance and mate acquisition in the mate-guarding amphipod crustacean Gammarus duebeni. We used laboratory experiments to investigate the impact of olfactory predator cues on activity, mate choice and mate-guarding behaviour of males and females. Pair formation declined under perceived risk of predation, reflecting reduced activity of both males and females and hence a reduced likelihood of encountering a mate. We also observed a reduction in the choosiness of both males and females. Under increased perceived predation risk, assessment of the female by the male was more likely to be followed by pair formation, and males showed a nonsignificant trend towards reduced discrimination in favour of large females and were less tenacious in their pair bond when they paired during exposure to predator cues. Females also showed less resistance behaviour, suggesting that both males and females trade off the costs of maximizing current reproductive success against the benefits of predator avoidance for survival and reproduction in the future. We discuss the implications of such context-dependent mating behaviours for ecological interactions between species and suggest that predators, via the effects of perceived predation risk on mate choice and mate guarding in the prey species, induce trait-mediated indirect effects with the potential to influence population dynamics and community structure. (C) 2008 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Neotropical orchid bees (Euglossini) are conspicuously different from other corbiculate bees (Apinae) in their lack of advanced sociality and in male use of acquired odors (fragrances) as pheromone-analogues. In both contexts, orchid bee mating systems, in particular the number of males a female mates with, are of great interest but are currently unknown. To assess female mating frequency in the genus Euglossa, we obtained nests from three species in Mexico and Panama and genotyped mothers and their brood at microsatellite DNA loci. In 26 out of 29 nests, genotypes of female brood were fully consistent with being descended from a singly mated mother. In nests with more than one adult female present, those adult females were frequently related, with genotypes being consistent with full sister-sister (r = 0.75) or mother-daughter (r = 0.5) relationships. Thus, our genetic data support the notions of female philopatry and nest-reuse in the genus Euglossa. Theoretically, single mating should promote the evolution of eusociality by maximizing the relatedness among individuals in a nest. However, in Euglossini this genetic incentive has not led to the formation of eusocial colonies as in other corbiculate bees, presumably due to differing ecological or physiological selective regimes. Finally, monandry in orchid bees is in agreement with the theory that females select a single best mate based on the male fragrance phenotype, which may contain information on male age, cognitive ability, and competitive strength.
Resumo:
Deformed wing virus (DWV) represents an ideal model to study the interaction between mode of transmission and virulence in honey bees since it exhibits both horizontal and vertical transmissions. However, it is not yet clear if venereal-vertical transmission represents a regular mode of transmission for this virus in natural honey bee populations. Here, we provide clear evidence for the occurrence of high DWV titres in the endophallus of sexually mature drones collected from drone congregation areas (DCAs). Furthermore, the endophallus DWV titres of drones collected at their maternal hives were no different from drones collected at nearby DCAs, suggesting that high-titre DWV infection of the endophallus does not hinder the ability of drones to reach the mating area. The results are discussed within the context of the dispersal of DWV between colonies and the definition of DWV virulence with respect to the transmission route and the types of tissues infected.