34 resultados para Asbestos in building

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The overall intent of this research is to provide architects with information that can be used to improve their performance so as to optimally satisfy the client's requirements and achieve high-quality overall project performance in Nigerian construction industry. Architect performance criteria were identified based on literature within the domain of architect responsibilities. The assessment of architects’ performance was carried out through a questionnaire survey of clients of recently completed building projects in Nigeria. Analysis of data includes comparison of criteria using importance–performance index analysis. Factor analysis was carried out on criteria where architects are falling below average, to group and explore the latent structure of the criteria in the data. The results showed that the architect needs to focus on management skills and ability, buildability, design quality, project communication, project integration and client focus. These results would encourage architects to perform better within their full responsibilities in the building delivery process and deliver high-quality projects within Nigerian construction industry.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on a series of expert interviews, this study explores the involvement of facilities management (FM) specialists in building design. Early FM involvement in design is found to be particularly useful for the improvement of efficiency and effectiveness from a long-term perspective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The monitoring of temperature and moisture changes in response to different micro-environment of building stones is essential to understand the material behaviour and the degradation mechanisms. From a practical point of view, having a continuous and detailed understanding of micro-environmental changes in building stones helps to assist in their maintenance and repair strategies. Temperature within the stone is usually monitored by means of thermistors, whereas wide ranges of techniques are available for monitoring the moisture. In the case of concrete an electrical resistance method has previously been used as an inexpensive tool for monitoring moisture changes. This paper describes the adaptation of this technique and describes its further development for monitoring moisture movement in building stones.
In this study a block of limestone was subjected to intermittent infrared radiation with programmed cycles of ambient temperature, rainfall and wind conditions in an automated climatic chamber. The temperature and moisture changes at different depths within the stone were monitored by means of bead thermistors and electrical resistance sensors. This experiment has helped to understand the thermal conductivity and moisture transport from surface into deeper parts of the stone at different simulated extreme climatic conditions. Results indicated that variations in external ambient conditions could substantially affect the moisture transport and temperature profile within the micro-environment of building stones and hence they could have a significant impact on stone decay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Weathering of stone is one of the major reasons for the damage of stone masonry structures and it takes place due to interlinked chemical, physical and biological processes in stones. The key parameters involved in the deterioration processes are temperature, moisture and salt. It is now known that the sudden variations in temperature and moisture greatly accelerate the weathering process of the building stone fabric. Therefore, in order to monitor these sudden variations an effective and continuous monitoring system is needed. Furthermore, it must consist of robust sensors which are accurate and can survive in the harsh environments experienced in and around masonry structures. Although salt penetration is important for the rate of deterioration of stone masonry structures, the processes involved are much slower than the damage associated with temperature and moisture variations. Therefore, in this paper a novel fibre optic temperature cum relative humidity sensor is described and its applicability in monitoring building stones demonstrated. The performance of the sensor is assessed in an experiment comprising wetting and drying of limestone blocks. The results indicate that the novel fibre optic relative humidity sensor which is tailor made for applications in masonry structures performed well in wetting and drying tests, whilst commercial capacitance based sensors failed to recover during the drying regime for a long period after a wetting regime. That is, the fibre optic sensor has the capability to measure both sorption and de-sorption characteristics of stone blocks. This sensor is used in a test wall in Oxford and the data thus obtained strengthened the laboratory observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data on rock temperatures has previously been collected to characterise typical diurnal regimes, and more recently to describe short-term variability in extreme locations. However, there is also the case that little is understood concerning the impact of extreme events in otherwise temperate environments. Internal stone temperatures (5?cm) collected during the atypical cold extreme experienced, throughout the UK, in December 2010 show a difference between ambient air temperatures and aspect-related thermal differences, particularly concerning temperature lows and the influence of radiative heating. In this case, debris release was not visible; however, laboratory simulations have shown that under such conditions, surface loss does not necessarily negate the occurrence of internal stone modifications. This preparatory sequence of change demonstrates that surface loss is not the result of one process, but rather many operating over time to sufficiently decrease stone strength to facilitate obvious damage.