17 resultados para Ars erótica

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Usage of anticoagulant rodenticides (ARs) is an integral component of modern agriculture and is essential for the control of commensal rodent populations. However, the extensive deployment of ARs has led to widespread exposure of a range of non-target predatory birds and mammals to some compounds, in particular the second-generation anticoagulant rodenticides (SCARS). As a result, there has been considerable effort placed into devising voluntary best practice guidelines that increase the efficacy of rodent control and reduce the risk of non-target exposure. Currently, there is limited published information on actual practice amongst users or implementation of best practice. We assessed the behaviour of a typical group of users using an on-farm questionnaire survey. Most baited for rodents every year using SGARs. Most respondents were apparently aware of the risks of non-target exposure and adhered to some of the best practice recommendations but total compliance was rare. Our questionnaire revealed that users of first generation anticoagulant rodenticides rarely protected or checked bait stations, and so took little effort to prevent primary exposure of non-targets. Users almost never searched for and removed poisoned carcasses and many baited for prolonged periods or permanently. These factors are all likely to enhance the likelihood of primary and secondary exposure of non-target species. (C) 2010 Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

alpha(1)-adrenergic receptor (AR) activation is thought to be initiated by disruption of a constraining interhelical salt bridge (Porter et al., 1996). Disruption of this salt bridge is achieved through a competition for the aspartic acid residue in transmembrane domain three by the protonated amine of the endogenous ligand norepinephrine and a lysine residue in transmembrane domain seven. To further test this hypothesis, we investigated the possibility that a simple amine could mimic an important functional group of the endogenous ligand and break this alpha(1)-AR ionic constraint leading to agonism. Triethylamine (TEA) was able to generate concentration-dependent increases of soluble inositol phosphates in COS-1 cells transiently transfected with the hamster alpha(1b)-AR and in Rat-1 fibroblasts stably transfected with the human alpha(1a)-AR subtype. TEA was also able to synergistically potentiate the second messenger production by weak partial alpha(1)-AR agonists and this effect was fully inhibited by the alpha(1)-AR antagonist prazosin. However, this synergistic potentiation was not observed for full alpha(1)-AR agonists. Instead, TEA caused a parallel rightward shift of the dose-response curve, consistent with the properties of competitive antagonism. TEA specifically bound to a single population of alpha(1)-ARs with a K-i of 28.7 +/- 4.7 mM. In addition, the site of binding by TEA to the alpha(1)-AR is at the conserved aspartic acid residue in transmembrane domain three, which is part of the constraining salt bridge. These results indicate a direct interaction of TEA in the receptor agonist binding pocket that leads to a disruption of the constraining salt bridge, thereby initiating alpha(1)-AR activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: Myocardial ischemia/reperfusion (I/R) is associated with mitochondrial dysfunction and subsequent cardiomyocyte death. The generation of excessive quantities of reactive oxygen species (ROS) and resultant damage to mitochondrial enzymes is considered an important mechanism underlying reperfusion injury. Mitochondrial complex I can exist in two interconvertible states: active (A) and deactive or dormant (D). We have studied the active/deactive (A/D) equilibrium in several tissues under ischemic conditions in vivo and investigated the sensitivity of both forms of the heart enzyme to ROS.

Results: We found that in the heart, t½ of complex I deactivation during ischemia was 10?min, and that reperfusion resulted in the return of A/D equilibrium to its initial level. The rate of superoxide generation by complex I was higher in ischemic samples where content of the D-form was higher. Only the D-form was susceptible to inhibition by H2O2 or superoxide, whereas turnover-dependent activation of the enzyme resulted in formation of the A-form, which was much less sensitive to ROS. The mitochondrial-encoded subunit ND3, most likely responsible for the sensitivity of the D-form to ROS, was identified by redox difference gel electrophoresis.

Innovation: A combined in vivo and biochemical approach suggests that sensitivity of the mitochondrial system to ROS during myocardial I/R can be significantly affected by the conformational state of complex I, which may therefore represent a new therapeutic target in this setting.

Conclusion: The presented data suggest that transition of complex I into the D-form in the absence of oxygen may represent a key event in promoting cardiac injury during I/R.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SIGNIFICANCE:
Ionizing radiation (IR) can induce a wide range of unique deoxyribonucleic acid (DNA) lesions due to the spatiotemporal correlation of the ionization produced. Of these, DNA double strand breaks (DSBs) play a key role. Complex mechanisms and sophisticated pathways are available within cells to restore the integrity and sequence of the damaged DNA molecules.
RECENT ADVANCES:
Here we review the main aspects of the DNA DSB repair mechanisms with emphasis on the molecular pathways, radiation-induced lesions, and their significance for cellular processes.
CRITICAL ISSUES:
Although the main characteristics and proteins involved in the two DNA DSB repair processes present in eukaryotic cells (homologous recombination and nonhomologous end-joining) are reasonably well established, there are still uncertainties regarding the primary sensing event and their dependency on the complexity, location, and time of the damage. Interactions and overlaps between the different pathways play a critical role in defining the repair efficiency and determining the cellular functional behavior due to unrepaired/miss-repaired DNA lesions. The repair pathways involved in repairing lesions induced by soluble factors released from directly irradiated cells may also differ from the established response mechanisms.
FUTURE DIRECTIONS:
An improved understanding of the molecular pathways involved in sensing and repairing damaged DNA molecules and the role of DSBs is crucial for the development of novel classes of drugs to treat human diseases and to exploit characteristics of IR and alterations in tumor cells for successful radiotherapy applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Girli Concrete is a cross disciplinary funded research project based in the University of Ulster involving a textile designer/ researcher, an architect/ academic and a concrete manufacturing firm.
Girli Concrete brings together concrete and textile technologies, testing ideas of
concrete as textile and textile as structure. It challenges the perception of textiles as only the ‘dressing’ to structure and instead integrates textile technologies into the products of building products. Girli Concrete uses ‘low tech’ methods of wet and dry concrete casting in combination with ‘high tech’ textile methods using laser cutting, etching, flocking and digital printing. Whilst we have been inspired by recent print and imprint techniques in architectural cladding, Girli Concrete is generated within the depth of the concrete’s cement paste “skin”, bringing the trades and crafts of both industries together with innovative results.
Architecture and Textiles have an odd, somewhat unresolved relationship. Confined to a subservient role in architecture, textiles exist chiefly within the categories of soft furnishings and interior design. Girli Concrete aims to mainstream tactility in the production of built environment products, raising the human and environmental interface to the same specification level as the technical. This paper will chart:
The background and wider theoretical concerns to the project.
The development of Girli Concrete, highlighting the areas where craft becomes
art and art becomes science in the combination of textile and concrete
technologies.
The challenges of identifying funding to support such combination technologies,
working methods and philosophies.
The challenges of generating and sustaining practice within an academic
research environment
The outcomes to date

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of audience response systems (ARSs) or ‘clickers’ in higher education has increased over the recent years, predominantly owing to their ability to actively engage students, for promoting individual and group learning, and for providing instantaneous feedback to students and teachers. This paper describes how group-basedARSquizzes have been integrated into an undergraduate civil engineering course on foundation design. Overall, theARSsummary quizzes were very well received by the students. Feedback obtained from the students indicates that the majority believed the group-based quizzes were useful activities, which helped to improve their understanding of course materials, encouraged self-assessment, and assisted preparation for their summative examination. Providing students with clickers does not, however, necessarily guarantee the class will be engaged with the activity. If an ARS activity is to be successful, careful planning and design must be carried out and modifications adopted where necessary, which should be informed by the literature and relevant student feedback.

Relevância:

10.00% 10.00%

Publicador:

Resumo:


We report use of PEG-DSPE coated oxidized graphene nanoribbons (O-GNR-PEG-DSPE) as agent for delivery of anti-tumor drug Lucanthone (Luc) into Glioblastoma Multiformae (GBM) cells targeting base excision repair enzyme APE-1 (Apurinic endonuclease-1). Lucanthone, an endonuclease inhibitor of APE-1, was loaded onto O-GNR-PEG-DSPEs using a simple non-covalent method. We found its uptake by GBM cell line U251 exceeding 67% and 60% in APE-1-overexpressing U251, post 24 h. However, their uptake was ~ 38% and 29% by MCF-7 and rat glial progenitor cells (CG-4), respectively. TEM analysis of U251 showed large aggregates of O-GNR-PEG-DSPE in vesicles. Luc-O-GNR-PEG-DSPE was significantly toxic to U251 but showed little/no toxicity when exposed to MCF-7/CG-4 cells. This differential uptake effect can be exploited to use O-GNR-PEG-DSPEs as a vehicle for Luc delivery to GBM, while reducing nonspecific cytotoxicity to the surrounding healthy tissue. Cell death in U251 was necrotic, probably due to oxidative degradation of APE-1.

Graphical abstract

We used O-GNR-PEG-DSPE as a reliable, non-toxic vehicle for delivery of APE-1 inhibiting Lucanthone into GBM tumor cell lines. LUC-O-GNR-PEG-DSPE particles showed 60% or more uptake by CMV/U251 and A1-5/CMV/U251 where as the uptake by MCF7 and normal CG4 glial cells was much lower (38% and 29% respectively). Different concentrations of Luc (5–80 μM) loaded onto O-GNR-PEG-DSPE showed lower toxicity in the exposed cells compared to the free drug, due to possible slow release of the drug from this particle, which ensures minimum non-specific release of the drug from the particle once it is injected in vivo.
http://ars.els-cdn.com/content/image/1-s2.0-S1549963414004249-fx1.jpg

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present paper, a study on the influence of the alkyl chain length in N-alkyl-triethylammonium bis(trifluoromethylsulfonyl)imide ionic liquids, [NR,222][Tf2N] (R   = 6, 8 or 12), on the excess molar enthalpy at 303.15 K and excess molar volume within the temperature interval (283.15–338.15 K) of ionic liquid + methanol mixtures is carried out. Small excess molar volumes with highly asymmetric curves (i.e. S-shape) as a function of mole fraction composition were obtained, with negative values showing in the methanol-rich regions. The excess molar volumes increase with the increase of the alkyl-chain length of the ammonium cation of the ionic liquid and decrease with temperature. The excess enthalpies of selected binary mixtures are positive over the whole composition range and increase slightly with the length of the alkyl side-chain of the cation on the ionic liquid. Both excess properties were subsequently correlated using a Redlich–Kister-type equation, as well as by using the ERAS model. From this semipredictive model the studied excess quantities could be obtained from its chemical and physical contribution. Finally, the COSMOThermX software has been used to evaluate its prediction capability on the excess enthalpy for investigated mixtures at 303.15 K and 0.1 MPa. From this work, it appears that COSMOThermX method predicts this property with good accuracy of approx. 10%, providing at the same time the correct order of magnitude of the partial molar excess enthalpies at infinite dilution for the studied ILs,

<img height="21" border="0" style="vertical-align:bottom" width="33" alt="View the MathML source" title="View the MathML source" src="http://origin-ars.els-cdn.com/content/image/1-s2.0-S0378381213006869-si13.gif">H¯1E,∞, and methanol, <img height="21" border="0" style="vertical-align:bottom" width="33" alt="View the MathML source" title="View the MathML source" src="http://origin-ars.els-cdn.com/content/image/1-s2.0-S0378381213006869-si14.gif">H¯2E,∞.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The methane solubility in five pure electrolyte solvents and one binary solvent mixture for lithium ion batteries – such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC) and the (50:50 wt%) mixture of EC:DMC was studied experimentally at pressures close to atmospheric and as a function of temperature between (280 and 343) K by using an isochoric saturation technique. The effect of the selected anions of a lithium salt LiX (X = hexafluorophosphate,

&lt;img height="16" border="0" style="vertical-align:bottom" width="27" alt="View the MathML source" title="View the MathML source" src="http://origin-ars.els-cdn.com/content/image/1-s2.0-S0021961414002146-si1.gif"&gt;PF6-; tris(pentafluoroethane)trifluorurophosphate, FAP; bis(trifluoromethylsulfonyl)imide, TFSI) on the methane solubility in electrolytes for lithium ion batteries was then investigated using a model electrolyte based on the binary mixture of EC:DMC (50:50 wt%) + 1 mol · dm−3 of lithium salt in the same temperature and pressure ranges. Based on experimental solubility data, the Henry’s law constant of the methane in these solutions were then deduced and compared together and with those predicted by using COSMO-RS methodology within COSMOthermX software. From this study, it appears that the methane solubility in each pure solvent decreases with the temperature and increases in the following order: EC < PC < EC:EMC (50:50 wt%) < DMC < EMC < DEC, showing that this increases with the van der Walls force in solution. Additionally, in all investigated EC:DMC (50:50 wt%) + 1 mol · dm−3 of lithium salt electrolytes, the methane solubility decreases also with the temperature and the methane solubility is higher in the electrolyte containing the LiFAP salt, followed by that based on the LiTFSI one. From the variation of the Henry’s law constants with the temperature, the partial molar thermodynamic functions of solvation, such as the standard Gibbs free energy, the enthalpy, and the entropy where then calculated, as well as the mixing enthalpy of the solvent with methane in its hypothetical liquid state. Finally, the effect of the gas structure on their solubility in selected solutions was discussed by comparing methane solubility data reported in the present work with carbon dioxide solubility data available in the same solvents or mixtures to discern the more harmful gas generated during the degradation of the electrolyte, which limits the battery lifetime.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIMS: Although earlier reports highlighted a tumor suppressor role for manganese superoxide dismutase (MnSOD), recent evidence indicates increased expression in a variety of human cancers including aggressive breast carcinoma. In the present article, we hypothesized that MnSOD expression is significantly amplified in the aggressive breast carcinoma basal subtype, and targeting MnSOD could be an attractive strategy for enhancing chemosensitivity of this highly aggressive breast cancer subtype.

RESULTS: Using MDA-MB-231 and BT549 as a model of basal breast cancer cell lines, we show that knockdown of MnSOD decreased the colony-forming ability and sensitized the cells to drug-induced cell death, while drug resistance was associated with increased MnSOD expression. In an attempt to develop a clinically relevant approach to down-regulate MnSOD expression in patients with basal breast carcinoma, we employed activation of the peroxisome proliferator-activated receptor gamma (PPARγ) to repress MnSOD expression; PPARγ activation significantly reduced MnSOD expression, increased chemosensitivity, and inhibited tumor growth. Moreover, as a proof of concept for the clinical use of PPARγ agonists to decrease MnSOD expression, biopsies derived from breast cancer patients who had received synthetic PPARγ ligands as anti-diabetic therapy had significantly reduced MnSOD expression. Finally, we provide evidence to implicate peroxynitrite as the mechanism involved in the increased sensitivity to chemotherapy induced by MnSOD repression.

INNOVATION AND CONCLUSION: These data provide evidence to link increased MnSOD expression with the aggressive basal breast cancer, and underscore the judicious use of PPARγ ligands for specifically down-regulating MnSOD to increase the chemosensitivity of this subtype of breast carcinoma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biosorption process of anionic dye Alizarin Red S (ARS) and cationic dye methylene blue (MB) as a function of solution pH, initial concentration and contact time onto olive stone (OS) biomass has been investigated. The main objectives of the current study are to: (i) study the chemistry and the mechanism of ARS and MB biosorption onto olive stone and the type of OS–ARS, MB interactions occurring, (ii) study the biosorption equilibrium and kinetic experimental data required for the design and operation of column reactors. Equilibrium biosorption isotherms and kinetics were also examined. Experimental equilibrium data were fitted to four different isotherms by non-linear regression method, however, the biosorption experimental data for ARS and MB dyes were well interpreted by the Temkin and Langmuir isotherms, respectively. The maximum monolayer adsorption capacity for ARS and MB dyes were 109.0 and 102.6 mg/g, respectively. The kinetic data of the two dyes could be better described by the pseudo second-order model. The data showed that olive stone can be effectively used for removing dyes from wastewater.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SIGNIFICANCE: Heme degradation, which was described more than 30 years ago, is still very actively explored with many novel discoveries on its role in various disease models every year.

RECENT ADVANCES: The heme oxygenases (HO) are metabolic enzymes that utilize NADPH and oxygen to break apart the heme moiety liberating biliverdin (BV), carbon monoxide (CO), and iron. Heme that is derived from hemoproteins can be toxic to the cells and if not removed immediately, it causes cell apoptosis and local inflammation. Elimination of heme from the milieu enables generation of three products that influences numerous metabolic changes in the cell.

CRITICAL ISSUES: CO has profound effects on mitochondria and cellular respiration and other hemoproteins to which it can bind and affect their function, while BV and bilirubin (BR), the substrate and product of BV, reductase, respectively, are potent antioxidants. Sequestration of iron into ferritin and its recycling in the tissues is a part of the homeodynamic processes that control oxidation-reduction in cellular metabolism. Further, heme is an important component of a number of metabolic enzymes, and, therefore, HO-1 plays an important role in the modulation of cellular bioenergetics.

FUTURE DIRECTIONS: In this review, we describe the cross-talk between heme oxygenase-1 (HO-1) and its products with other metabolic pathways. HO-1, which we have labeled Nike, the goddess who personified victory, dictates triumph over pathophysiologic conditions, including diabetes, ischemia, and cancer.