12 resultados para Appearance-based localisation
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Indoor wireless network based client localisation requires the use of a radio map to relate received signal strength to specific locations. However, signal strength measurements are time consuming, expensive and usually require unrestricted access to all parts of the building concerned. An obvious option for circumventing this difficulty is to estimate the radio map using a propagation model. This paper compares the effect of measured and simulated radio maps on the accuracy of two different methods of wireless network based localisation. The results presented indicate that, although the propagation model used underestimated the signal strength by up to 15 dB at certain locations, there was not a signigicant reduction in localisation performance. In general, the difference in performance between the simulated and measured radio maps was around a 30 % increase in rms error
Resumo:
The range of potential applications for indoor and campus based personnel localisation has led researchers to create a wide spectrum of different algorithmic approaches and systems. However, the majority of the proposed systems overlook the unique radio environment presented by the human body leading to systematic errors and inaccuracies when deployed in this context. In this paper RSSI-based Monte Carlo Localisation was implemented using commercial 868 MHz off the shelf hardware and empirical data was gathered across a relatively large number of scenarios within a single indoor office environment. This data showed that the body shadowing effect caused by the human body introduced path skew into location estimates. It was also shown that, by using two body-worn nodes in concert, the effect of body shadowing can be mitigated by averaging the estimated position of the two nodes worn on either side of the body. © Springer Science+Business Media, LLC 2012.
Resumo:
Background: Despite its prevalence and prognostic impact, primary cachexia is not well understood. Its potential to cause considerable psychological stress indicates the need for qualitative research to help understand the perspectives of those affected.
Objective: The aims of this study were to describe the perspectives of patients with primary cachexia, of their relatives, and of the healthcare professionals involved in their care and to demonstrate how this evidence can be applied in practice at 4 different levels of application ranging from empathy to coaching.
Methods: A review of the qualitative literature and empirical qualitative investigation was used to understand the experiences of patients and relatives and the perspectives of professionals.
Results: The main worries expressed by patients and relatives concerned appetite loss, changing appearance, prognosis, and social interaction. We also describe their coping responses and their views of professionals’ responses. The main concerns of professionals related to poor communication, lack of clinical guidance, and lack of professional education.
Conclusions: Understanding patients’, families’, and professionals’ perspectives, and mapping that understanding onto what we know about the trajectory and prognosis of the condition, provides the evidence base for good practice. Qualitative research has a central role to play in providing the knowledge base for the nursing care of patients with cachexia.
Implications for Practice: The evidence provided can improve nurses’ insight and assist them in assessment of status, the provision of guidance, and coaching. There is a need for the development of a holistic, information-based integrated care pathway for those with cancer cachexia and their families.
Resumo:
Ambisonics and higher order ambisonics (HOA) technologies aim at reproducing sound field either synthesised or previously recorded with dedicated microphones. Based on a spherical harmonic decomposition, the sound field is more precisely described when higher-order components are used. The presented study evaluated the perceptual and objective localisation accuracy of the sound field encoded with four microphones of order one to four and decoded over a ring of loudspeakers. A perceptual test showed an improvement of the localisation with higher order ambisonic microphones. Reproduced localisation indices were estimated for the four microphones and the respective synthetic systems of order one to four. The perceptual and objective analysis revealed the same conclusions. The localisation accuracy depends on the ambisonic order as well as the source incidence. Furthermore, impairments linked to the microphones were highlighted.
Resumo:
Colour-based particle filters have been used exhaustively in the literature given rise to multiple applications However tracking coloured objects through time has an important drawback since the way in which the camera perceives the colour of the object can change Simple updates are often used to address this problem which imply a risk of distorting the model and losing the target In this paper a joint image characteristic-space tracking is proposed which updates the model simultaneously to the object location In order to avoid the curse of dimensionality a Rao-Blackwellised particle filter has been used Using this technique the hypotheses are evaluated depending on the difference between the model and the current target appearance during the updating stage Convincing results have been obtained in sequences under both sudden and gradual illumination condition changes Crown Copyright (C) 2010 Published by Elsevier B V All rights reserved
Resumo:
In this paper, we introduce an efficient method for particle selection in tracking objects in complex scenes. Firstly, we improve the proposal distribution function of the tracking algorithm, including current observation, reducing the cost of evaluating particles with a very low likelihood. In addition, we use a partitioned sampling approach to decompose the dynamic state in several stages. It enables to deal with high-dimensional states without an excessive computational cost. To represent the color distribution, the appearance of the tracked object is modelled by sampled pixels. Based on this representation, the probability of any observation is estimated using non-parametric techniques in color space. As a result, we obtain a Probability color Density Image (PDI) where each pixel points its membership to the target color model. In this way, the evaluation of all particles is accelerated by computing the likelihood p(z|x) using the Integral Image of the PDI.
Resumo:
Handling appearance variations is a very challenging problem for visual tracking. Existing methods usually solve this problem by relying on an effective appearance model with two features: (1) being capable of discriminating the tracked target from its background, (2) being robust to the target's appearance variations during tracking. Instead of integrating the two requirements into the appearance model, in this paper, we propose a tracking method that deals with these problems separately based on sparse representation in a particle filter framework. Each target candidate defined by a particle is linearly represented by the target and background templates with an additive representation error. Discriminating the target from its background is achieved by activating the target templates or the background templates in the linear system in a competitive manner. The target's appearance variations are directly modeled as the representation error. An online algorithm is used to learn the basis functions that sparsely span the representation error. The linear system is solved via ℓ1 minimization. The candidate with the smallest reconstruction error using the target templates is selected as the tracking result. We test the proposed approach using four sequences with heavy occlusions, large pose variations, drastic illumination changes and low foreground-background contrast. The proposed approach shows excellent performance in comparison with two latest state-of-the-art trackers.
Resumo:
This paper presents an Invariant Information Local Sub-map Filter (IILSF) as a technique for consistent Simultaneous Localisation and Mapping (SLAM) in a large environment. It harnesses the benefits of sub-map technique to improve the consistency and efficiency of Extended Kalman Filter (EKF) based SLAM. The IILSF makes use of invariant information obtained from estimated locations of features in independent sub-maps, instead of incorporating every observation directly into the global map. Then the global map is updated at regular intervals. Applying this technique to the EKF based SLAM algorithm: (a) reduces the computational complexity of maintaining the global map estimates and (b) simplifies transformation complexities and data association ambiguities usually experienced in fusing sub-maps together. Simulation results show that the method was able to accurately fuse local map observations to generate an efficient and consistent global map, in addition to significantly reducing computational cost and data association ambiguities.
Resumo:
In this paper we propose a novel recurrent neural networkarchitecture for video-based person re-identification.Given the video sequence of a person, features are extracted from each frame using a convolutional neural network that incorporates a recurrent final layer, which allows information to flow between time-steps. The features from all time steps are then combined using temporal pooling to give an overall appearance feature for the complete sequence. The convolutional network, recurrent layer, and temporal pooling layer, are jointly trained to act as a feature extractor for video-based re-identification using a Siamese network architecture.Our approach makes use of colour and optical flow information in order to capture appearance and motion information which is useful for video re-identification. Experiments are conduced on the iLIDS-VID and PRID-2011 datasets to show that this approach outperforms existing methods of video-based re-identification.
https://github.com/niallmcl/Recurrent-Convolutional-Video-ReID
Project Source Code