54 resultados para Antigen-presenting Cells
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Langerhans cells (LCs) are antigen-presenting cells that reside in the epidermis of the skin and traffic to lymph nodes (LNs). The general role of these cells in skin immune responses is not clear because distinct models of LC depletion resulted in opposite conclusions about their role in contact hypersensitivity (CHS) responses. While comparing these models, we discovered a novel population of LCs that resides in the dermis and does not represent migrating epidermal LCs, as previously thought. Unlike epidermal LCs, dermal Langerin(+) dendritic cells (DCs) were radiosensitive and displayed a distinct cell surface phenotype. Dermal Langerin(+) DCs migrate from the skin to the LNs after inflammation and in the steady state, and represent the majority of Langerin(+) DCs in skin draining LNs. Both epidermal and dermal Langerin(+) DCs were depleted by treatment with diphtheria toxin in Lang-DTREGFP knock-in mice. In contrast, transgenic hLang-DTA mice lack epidermal LCs, but have normal numbers of dermal Langerin(+) DCs. CHS responses were abrogated upon depletion of both epidermal and dermal LCs, but were unaffected in the absence of only epidermal LCs. This suggests that dermal LCs can mediate CHS and provides an explanation for previous differences observed in the two-model systems.
Resumo:
Recent studies have challenged the view that Langerhans cells (LCs) constitute the exclusive antigen-presenting cells of the skin and suggest that the dermal dendritic cell (DDC) network is exceedingly complex. Using knockin mice to track and ablate DCs expressing langerin (CD207), we discovered that the dermis contains five distinct DC subsets and identified their migratory counterparts in draining lymph nodes. Based on this refined classification, we demonstrated that the quantitatively minor CD207+ CD103+ DDC subset is endowed with the unique capability of cross-presenting antigens expressed by keratinocytes irrespective of the presence of LCs. We further showed that Y-Ae, an antibody that is widely used to monitor the formation of complexes involving I-Ab molecules and a peptide derived from the I-E alpha chain, recognizes mature skin DCs that express I-Ab molecules in the absence of I-E alpha. Knowledge of this extra reactivity is important because it could be, and already has been, mistakenly interpreted to support the view that antigen transfer can occur between LCs and DDCs. Collectively, these data revisit the transfer of antigen that occurs between keratinocytes and the five distinguishable skin DC subsets and stress the high degree of functional specialization that exists among them.
Resumo:
This study defines a critical role for Btk in regulating TLR4-induced crosstalk between antigen presenting cells (APCs) and natural killer (NK) cells. Reduced levels of IL-12, IL-18 and IFN-? were observed in Btk-deficient mice and ex vivo generated macrophages and dendritic cells (DCs) following acute LPS administration, whilst enhanced IL-10 production was observed. In addition, upregulation of activation markers and antigen presentation molecules on APCs was also impaired in the absence of Btk. APCs, by virtue of their ability to produce IL-12 and IL-18, are strong inducers of NK-derived IFN-?. Co-culture experiments demonstrate that Btk-deficient DCs were unable to drive wild-type or Btk-deficient NK cells to induce IFN-? production, whereas these responses could be restored by exogenous administration of IL-12 and IL-18. Thus Btk is a critical regulator of APC-induced NK cell activation by virtue of its ability to regulate IL-12 and IL-18 production in response to acute LPS administration.
Resumo:
The efficacious delivery of antigens to antigen-presenting cells (APCs), in particular, to dendritic cells (DCs), and their subsequent activation remains a significant challenge in the development of effective vaccines. This study highlights the potential of dissolving microneedle (MN) arrays laden with nanoencapsulated antigen to increase vaccine immunogenicity by targeting antigen specifically to contiguous DC networks within the skin. Following in situ uptake, skin-resident DCs were able to deliver antigen-encapsulated poly-d,l-lactide-co-glycolide (PGLA) nanoparticles to cutaneous draining lymph nodes where they subsequently induced significant expansion of antigen-specific T cells. Moreover, we show that antigen-encapsulated nanoparticle vaccination via microneedles generated robust antigen-specific cellular immune responses in mice. This approach provided complete protection in vivo against both the development of antigen-expressing B16 melanoma tumors and a murine model of para-influenza, through the activation of antigen-specific cytotoxic CD8(+) T cells that resulted in efficient clearance of tumors and virus, respectively. In addition, we show promising findings that nanoencapsulation facilitates antigen retention into skin layers and provides antigen stability in microneedles. Therefore, the use of biodegradable polymeric nanoparticles for selective targeting of antigen to skin DC subsets through dissolvable MNs provides a promising technology for improved vaccination efficacy, compliance, and coverage.
Resumo:
We here describe novel aspects of CD8(+) and CD4(+) T cell subset interactions that may be clinically relevant and provide new tools for regulating the reconstitution of the peripheral CD8(+) T cell pools in immune-deficient states. We show that the reconstitution capacity of transferred isolated naive CD8(+) T cells and their differentiation of effector functions is limited, but both dramatically increase upon the co-transfer of CD4(+) T cells. This helper effect is complex and determined by multiple factors. It was directly correlated to the number of helper cells, required the continuous presence of the CD4(+) T cells, dependent on host antigen-presenting cells (APCs) expressing CD40 and on the formation of CD4/CD8/APC cell clusters. By comparing the recovery of (CD44(+)CD62L(high)) T-CM and (CD44(+)CD62L(low)) T-EM CD8(+) T cells, we found that the accumulation of TCM and TEM subsets is differentially regulated. T-CM-cell accumulation depended mainly on type I interferons, interleukin (IL)-6, and IL-15, but was independent of CD4(+) T-cell help. In contrast, TEM-cell expansion was mainly determined by CD4(+) T-cell help and dependent on the expression of IL-2R beta by CD8 cells, on IL-2 produced by CD4(+) T-cells, on IL-15 and to a minor extent on IL-6.
Resumo:
Wiskott-Aldrich syndrome (WAS) is a rare disease characterized by microthrombocytopenia, eczema and immune deficiency. In this study a direct-viewing chemotaxis chamber was used to analyse chemotactic responses of WAS neutrophils and macrophages in stable linear concentration gradients. In five patients with classic WAS, chemotaxis of macrophages but not of neutrophils was found to be abolished, whereas the speed of random motility of both cell types was found to be indistinguishable from control cells. This supports the existence of an essential functional link, previously suggested by biochemical studies, between Cdc42, WAS protein (WASp) and the actin cytoskeleton in primary human macrophages. Moreover, these data suggest that Cdc42-WASp-mediated filopodial extension is a requirement for chemotaxis but not for chemokinesis in these cells. Abnormal directional cell motility of macrophages and related antigen-presenting cells may play a significant part in the immune deficiency and eczema of WAS.
Resumo:
INTRODUCTION: Breaching the skin's stratum corneum barrier raises the possibility of the administration of vaccines, gene vectors, antibodies and even nanoparticles, all of which have at least their initial effect on populations of skin cells. AREAS COVERED: Intradermal vaccine delivery holds enormous potential for improved therapeutic outcomes for patients, particularly those in the developing world. Various vaccine-delivery strategies have been employed, which are discussed in this review. The importance of cutaneous immunobiology on the effect produced by microneedle-mediated intradermal vaccination is also discussed. EXPERT OPINION: Microneedle-mediated vaccines hold enormous potential for patient benefit. However, in order for microneedle vaccine strategies to fulfill their potential, the proportion of an immune response that is due to the local action of delivered vaccines on skin antigen-presenting cells, and what is due to a systemic effect from vaccines reaching the systemic circulation, must be determined. Moreover, industry will need to invest significantly in new equipment and instrumentation in order to mass-produce microneedle vaccines consistently. Finally, microneedles will need to demonstrate consistent dose delivery across patient groups and match this to reliable immune responses before they will replace tried-and-tested needle-and-syringe-based approaches.
Resumo:
Measles remains a significant childhood disease, and is associated with a transient immune suppression. Paradoxically, measles virus (MV) infection also induces robust MV-specific immune responses. Current hypotheses for the mechanism underlying measles immune suppression focus on functional impairment of lymphocytes or antigen-presenting cells, caused by infection with or exposure to MV. We have generated stable recombinant MVs that express enhanced green fluorescent protein, and remain virulent in non-human primates. By performing a comprehensive study of virological, immunological, hematological and histopathological observations made in animals euthanized at different time points after MV infection, we developed a model explaining measles immune suppression which fits with the "measles paradox". Here we show that MV preferentially infects CD45RA - memory T-lymphocytes and follicular B-lymphocytes, resulting in high infection levels in these populations. After the peak of viremia MV-infected lymphocytes were cleared within days, followed by immune activation and lymph node enlargement. During this period tuberculin-specific T-lymphocyte responses disappeared, whilst strong MV-specific T-lymphocyte responses emerged. Histopathological analysis of lymphoid tissues showed lymphocyte depletion in the B- and T-cell areas in the absence of apoptotic cells, paralleled by infiltration of T-lymphocytes into B-cell follicles and reappearance of proliferating cells. Our findings indicate an immune-mediated clearance of MV-infected CD45RA - memory T-lymphocytes and follicular B-lymphocytes, which causes temporary immunological amnesia. The rapid oligoclonal expansion of MV-specific lymphocytes and bystander cells masks this depletion, explaining the short duration of measles lymphopenia yet long duration of immune suppression. © 2012 de Vries et al.
Resumo:
This review describes an approach to the prevention of graft-versus-host disease (GVHD) and graft rejection following allogeneic BMT that differs from conventional methods. Ultraviolet (UV) irradiation inhibits the proliferative responses of lymphoid cells to mitogens and alloantigens by inactivation of T lymphocytes and dendritic cells, and in animal models this can prevent both GVHD and graft rejection. It is important that the marrow repopulating capacity of haemopoietic stem cells is not damaged by the irradiation process. We have found that polymorphic microsatellite markers are a sensitive way of assessing the impact of UV irradiation on chimerism after BMT in rodents.
Resumo:
BACKGROUND: We report the use of an ex vivo precision cut liver slice (PCLS) mouse model for studying hepatic schistosomiasis. In this system, liver tissue is unfixed, unfrozen, and alive for maintenance in culture and subsequent molecular analysis.
METHODS AND FINDINGS: Using thick naive mouse liver tissue and sterile culture conditions, the addition of soluble egg antigen (SEA) derived from Schistosoma japonicum eggs, followed 4, 24 and 48 hrs time points. Tissue was collected for transcriptional analysis and supernatants collected to quantitate liver enzymes, cytokines and chemokines. No significant hepatotoxicity was demonstrated by supernatant liver enzymes due to the presence of SEA. A proinflammatory response was observed both at the transcriptional level and at the protein level by cytokine and chemokine bead assay. Key genes observed elevated transcription in response to the addition of SEA included: IL1-α and IL1-β, IL6, all associated with inflammation. The recruitment of antigen presenting cells was reflected in increases in transcription of CD40, CCL4 and CSF1. Indications of tissue remodeling were seen in elevated gene expression of various Matrix MetalloProteinases (MMP3, 9, 10, 13) and delayed increases in TIMP1. Collagen deposition was significantly reduced in the presence of SEA as shown in COL1A1 expression by qPCR after 24 hrs culture. Cytokine and chemokine analysis of the culture supernatants confirmed the elevation of proteins including IL6, CCL3, CCL4 and CXCL5.
CONCLUSIONS: This ex vivo model system for the synchronised delivery of parasite antigen to liver tissue provides an insight into the early phase of hepatic schistosomiasis, corresponding with the release of soluble proteins from dying schistosome eggs.
Resumo:
The regulation of CD4 T cell numbers during an immune response should take account of the amount of antigen (Ag), the initial frequency of Ag-specific T cells, the mix of naive versus experienced cells, and (ideally) the diversity of the repertoire. Here we describe a novel mechanism of T cell regulation that potentially deals with all of these parameters. We found that CD4 T cells establish a negative feedback loop by capturing their cognate MHC/peptide complexes from Ag-presenting cells and presenting them to Ag-experienced CD4 T cells, thereby inhibiting their recruitment into the response while allowing recruitment of naive T cells. The inhibition is Ag specific, begins at day 2 (long before Ag disappearance), and cannot be overcome by providing new Ag-loaded dendritic cells. In this way CD4 T cell proliferation is regulated in a functional relationship to the amount of Ag, while allowing naive T cells to generate repertoire variety.
Resumo:
Scientists interested in the smooth muscles of the urinary tract, and their control, have recently been studying cells in the interstitium of tissues that express the c-kit antigen (Kit(+) cells). These cells have morphologic features that are reminiscent of the well-described pacemaker cells in the gut, the interstitial cells of Cajal (ICC). The spontaneous contractile behavior of muscles in the urinary tract varies widely, and it is clear that urinary tract Kit(+) interstitial cells cannot be playing an identical role to that played by the ICC in the gut. Nevertheless, there is increasing evidence that they do play a role in modulating the contractile behavior of adjacent smooth muscle, and might also be involved in mediating neural control. This review outlines the properties of ICC in the gut, and gives an account of the discovery of cells in the interstitium of the main components of the urinary tract. The physiologic properties of such cells and the functional implications of their presence are discussed, with particular reference to the bladder. In this organ, Kit(+) cells are found under the lamina propria, where they might interact with the urothelium and with sensory nerves, and also between and within the smooth-muscle bundles. Confocal microscopy and calcium imaging are being used to assess the physiology of ICC and their interactions with smooth muscles. Differences in the numbers of ICC are seen in smooth muscle specimens obtained from patients with various pathologies; in particular, bladder overactivity is associated with increased numbers of these cells.
Resumo:
The cellular prion protein (PrPC) is widely expressed in neural and non-neural tissues, but its function is unknown. Elucidation of the part played by PrPC in adaptive immunity has been a particular conundrum: increased expression of cell surface PrPC has been documented during T-cell activation, yet the functional significance of this activation remains unclear, with conflicting data on the effects of Prnp gene knockout on various parameters of T-cell immunity. We show here that Prnp mRNA is highly inducible within 8–24 h of T-cell activation, with surface protein levels rising from 24 h. When measured in parallel with CD69 and CD25, PrPC is a late activation antigen. Consistent with its up-regulation being a late activation event, PrP deletion did not alter T-cell-antigen presenting cell conjugate formation. Most important, activated PrP0/0 T cells demonstrated much reduced induction of several T helper (Th) 1, Th2, and Th17 cytokines, whereas others, such as TNF- and IL-9, were unaffected. These changes were investigated in the context of an autoimmune model and a bacterial challenge model. In experimental autoimmune encephalomyelitis, PrP-knockout mice showed enhanced disease in the face of reduced IL-17 responses. In a streptococcal sepsis model, this constrained cytokine program was associated with poorer local control of infection, although with reduced bacteremia. The findings indicate that PrPC is a potentially important molecule influencing T-cell activation and effector function.
Resumo:
Burkholderia cenocepacia, a member of the Burkholderia cepacia complex, is an opportunistic pathogen that causes devastating infections in patients with cystic fibrosis. The ability of B. cenocepacia to survive within host cells could contribute significantly to its virulence in immunocompromised patients. In this study, we explored the mechanisms that enable B. cenocepacia to survive inside macrophages. We found that B. cenocepacia disrupts the actin cytoskeleton of infected macrophages, drastically altering their morphology. Submembranous actin undergoes depolymerization, leading to cell retraction. The bacteria perturb actin architecture by inactivating Rho family GTPases, particularly Rac1 and Cdc42. GTPase inactivation follows internalization of viable B. cenocepacia and compromises phagocyte function: macropinocytosis and phagocytosis are markedly inhibited, likely impairing the microbicidal and antigen-presenting capability of infected macrophages. The type VI secretion system is essential for the bacteria to elicit these changes. This is the first report demonstrating inactivation of Rho family GTPases by a member of the B. cepacia complex.
Resumo:
Recent advances in corneal graft technology, including donor tissue retrieval, storage and surgical techniques, have greatly improved the clinical outcome of corneal grafts. Despite these advances, immune mediated corneal graft rejection remains the single most important cause of corneal graft failure. Several host factors have been identified as conferring a "high risk" status to the host. These include: more than two quadrant vascularisation, with associated lymphatics, which augment the afferent and efferent arc of the immune response; herpes simplex keratitis; uveitis; silicone oil keratopathy; previous failed (rejected) grafts; "hot eyes"; young recipient age; and multiple surgical procedures at the time of grafting. Large grafts, by virtue of being closer to the host limbus, with its complement of vessels and antigen-presenting Langerhans cells, also are more susceptible to rejection. The diagnosis of graft rejection is entirely clinical and in its early stages the clinical signs could be subtle. Graft rejection is largely mediated by the major histocompatibility antigens, minor antigens and perhaps blood group ABO antigens and some cornea-specific antigens. Just as rejection is mediated by active immune mediated events, the lack of rejection (tolerance) is also sustained by active immune regulatory mechanisms. The anterior chamber associated immune deviation (ACAID) and probably, conjunctiva associated lymphoid tissue (CALT) induced mucosal tolerance, besides others, play an important role. Although graft rejection can lead to graft failure, most rejections can be readily controlled if appropriate management is commenced at the proper time. Topical steroids are the mainstay of graft rejection management. In the high-risk situations however, systemic steroids, and other immunosuppressive drugs such as cyclosporin and tacrolimus (FK506) are of proven benefit, both for treatment and prevention of rejection.