46 resultados para Antenna radiation patterns

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is shown that the direction-of-arrival (DoA) information carried by an incident electromagnetic (EM) wave can be encoded into the evanescent near field of an electrically small resonance antenna array with a spatial rate higher than that of the incident field oscillation rate in free space. Phase conjugation of the received signal leads to the retrodirection of the near field in the antenna array environment, which in turn generates a retrodirected far-field beam toward the original DoA. This EM phenomenon enables electrically small retrodirective antenna arrays with superdirective, angular super-resolution, auto-pointing properties for an arbitrary DoA. A theoretical explanation of the phenomenon based on first principal observations is given and full-wave simulations demonstrate a realizability route for the proposed retrodirective terminal that is comprised of resonance dipole antenna elements. Specifically, it is shown that a three-element disk-loaded retrodirective dipole array with 0.15\lambda spacings can achieve a 3.4-dBi maximal gain, 3-dBi front-to-back ratio, and 13% return loss fractional bandwidth (at the 10-dB level). Then, it is demonstrated that the radiation gain of a three-element array can be improved to approximately 6 dBi at the expense of the return loss fractional bandwidth reduction (2%).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The radiation efficiency and resonance frequency of five compact antennas worn by nine individual test subjects was measured at 2.45 GHz in a reverberation chamber. The results show that, despite significant differences in body mass, wearable antenna radiation efficiency had a standard deviation less than 0.6 dB and the resonance frequency shift was less than 1% between test subjects. Variability in the radiation efficiency and resonance frequency shift between antennas was largely dependant on body tissue coupling which is related to both antenna geometry and radiation characteristics. The reverberation chamber measurements were validated using a synthetic tissue phantom and compared with results obtained in a spherical near field chamber and finite-difference time-domain (FDTD) simulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An iterative pattern synthesis approach for directional modulation (DM) transmitters is presented in this study. Unlike all previous work, this study offers the first discussion on constraining DM transmitter far-field radiation patterns so that energy is primarily concentrated in the spatial direction where low bit error rate is to be achieved, while interference projected along other directions is reduced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An electronically reconfigurable Rotman lens is described which generates multiple beams that can be switched from monopulse sum to difference radiation patterns when used in conjunction with a six element Vivaldi antenna array. This is achieved by exploiting the voltage-dependent dielectric anisotropy property of nematic state liquid crystals to provide switched 0 degrees and 180 degrees phase shifts in the array feed lines. The viability of the concept is demonstrated by designing an antenna which exhibits dynamically reconfigurable monopulse radiation patterns over the frequency band 6-10 GHz. Measured and simulated results are shown to be in good agreement. (c) 2013 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the leaky-mode theory is applied to take into account for the dielectric losses in millimetre waveband inhomogeneous leaky-wave antennas. A practical dielectric-filled cosine-tapered periodic leaky-wave antenna working in the 45GHz band is studied, showing how the desired sidelobes level and directivity are spoilt due to the effect of the losses. An iterative procedure is used to correct the negative effects of the losses in the radiation patterns of the leaky-wave structure. It is also shown the practical limits of the proposed correction approach. The leaky-mode theory is applied for the first time to compensate the losses in a practical leaky-wave antenna in hybrid waveguide printed circuit technology. This leaky-mode theory is validated with full-wave three-dimensional finite element method simulations of the designed antenna.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A periodic finite-difference time-domain (FDTD) analysis is presented and applied for the first time in the study of a two-dimensional (2-D) leaky-wave planar antenna based on dipole frequency selective surfaces (FSSs). First, the effect of certain aspects of the FDTD modeling in the modal analysis of complex waves is studied in detail. Then, the FDTD model is used for the dispersion analysis of the antenna of interest. The calculated values of the leaky-wave attenuation constants suggest that, for an antenna of this type and moderate length, a significant amount of power reaches the edges of the antenna, and thus diffraction can play an important role. To test the validity of our dispersion analysis, measured radiation patterns of a fabricated prototype are presented and compared with those predicted by a leaky-wave approach based on the periodic FDTD results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this communication we present a novel polarization-agile microstrip antenna design. To dynamically change the polarization state, the radiating patch is fed by a tunable quasi-lumped coupler. The whole structure can be dynamically altered to radiate electromagnetic waves with vertical linear, horizontal linear, right-handed circular or left-handed circular polarization simply by changing the operating mode of the quasi-lumped coupler. Due to its topology the coupler is simply reconfigured by switching the bias of two varactor diodes via a very simple DC bias circuitry: no additional capacitors or inductors are required. A prototype is fabricated with a 0.762-mm-thick upper layer substrate for the radiating element and a 0.130-mm-thick layer substrate for the coupler circuit, both with the same dielectric material relative permittivity of 2.22. The simulated and measured scattering parameters, the axial ratio in circular radiation-mode and the cross-polarization level in linear mode, the gain and the radiation patterns are presented. The agile polarization capabilities of this new antenna, as demonstrated in this communication, underscore its suitability for modern wireless communications in a multi-path propagation environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design, construction and measured performance is described of an offset parabolic reflector antenna which employs a reflectarray subreflector to tilt the focused beam from the boresight direction at 94 GHz. An analysis technique based on the method of moments (MoM) is used to design the dual-reflector antenna. Numerical simulations were employed to demonstrate that the high gain pattern of the antenna can be tilted to a predetermined angle by introducing a progressive phase shift across the aperture of the reflectarray. Experimental validation of the approach was made by constructing a 28 × 28 element patch reflectarray which was designed to deflect the beam 5° from the boresight direction in the azimuth plane. The array was printed on a 115 µm thick metal backed quartz wafer and the radiation patterns of the dual reflector antenna were measured from 92.6-95.5 GHz. The experimental results are used to validate the analysis technique by comparing the radiation patterns and the reduction in the peak gain due to beam deflection from the boresight direction. Moreover the results demonstrate that this design concept can be developed further to create an electronically scanned dual reflector antenna by using a tunable reflectarray subreflector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a hybrid scanning antenna architecture for applications in mm-wave intelligent mobile sensing and communications. We experimentally demonstrate suitable W-band leaky-wave antenna prototypes in substrate integrated waveguide (SIW) technology. Three SIW antennas have been designed that within a 6.5 % fractional bandwidth provide beam scanning over three adjacent angular sectors. Prototypes have been fabricated and their performance has been experimentally evaluated. The measured radiation patterns have shown three frequency scanning beams covering angles from 11 to 56 degrees with beamwidth of 10?±?3 degrees within the 88-94 GHz frequency range.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we investigate the azimuthal pattern symmetry of an Archimedean spiral antenna which is designed to operate over the frequency range 3-10 GHz. The performance of the spiral in free space is compared with a structure that is backed by a perfect electric conductor with a separation distance of ?/4 at the operating frequencies. The latter arrangement exhibits a higher gain, however it is observed that the radiation patterns are less symmetrical about boresight and this performance degradation increases with frequency. The predicted 3 dB beamwidth difference is shown to vary between 14° (3 GHz) and 51° (10 GHz). An improved antenna design is described which reduces the pattern asymmetry to ˜ 2° at 10 GHz. The reduction in modal contamination is obtained by inserting slots carefully arranged in a radial pattern to disrupt the surface currents that flow on the ground plane of the antenna

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that a significant increase in the gain and front-to-back ratio is obtained when different high impedance surface (HIS) sections are placed below the active regions of an Archimedean spiral antenna. The principle of operation is demonstrated at 3, 6, and 9 GHz for an antenna design that employs a ground plane composed of two dissimilar HISs. The unit cells of the HISs are collocated and resonant at the same frequency as the 3- and 6-GHz active regions of the wideband spiral. It is shown that the former HIS must also be designed to resonate at 9 GHz to avoid the generation of a boresight null that occurs because the structure is physically large enough to support higher-order modes. The improvement that is obtained at each of the three frequencies investigated is shown by comparing the predicted and measured radiation patterns for the free space and HIS-backed antenna.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel dual-band printed diversity antenna is proposed and studied. The antenna, which consists of two back-to- back monopoles with symmetric configuration, is printed on a printed circuit board. The effects of some important parameters of the proposed antenna are deeply studied and the design methodology is given. A prototype of the proposed antenna operating at UMTS (1920-2170 MHz) and 2.4-GHz WLAN (2400-2484 MHz) bands is provided to demonstrate the usability of the methodology in dual-band diversity antenna for mobile terminals. In the above two bands, the isolations of the prototype are larger than 13 dB and 16 dB, respectively. The measured radiation patterns of the two monopoles in general cover complementary space regions. The diversity performance is also evaluated by calculating the envelope correlation coefficient, the mean effective gains of the antenna elements and the diversity gain. It is proved that the proposed antenna can provide spatial and pattern diversity to combat multipath fading.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of a backing cavity composed of a frequency selective surface (FSS) above a metal plate as a means to suppress the back lobe radiation and increase the gain of an Archimedean spiral antenna that operates from 3 to 10 GHz is investigated. The FSS is designed to reflect signals in the upper band (7-10 GHz) with a loss of <;0.25 dB, and allow transmission in the lower band (3-6 GHz). Good impedance match and bidirectional to unidirectional beam transformation is obtained when the FSS and metal plate are inserted at a distance λ/4 below the spiral at the centre of the upper and lower bands, respectively. Simulated and measured radiation patterns are employed to show the performance enhancement, which is attributed to the FSS reflector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study reports the performance of an Archimedean spiral antenna, which exhibits unidirectional circularly polarized radiation patterns with a peak gain >8 dBic in the lower (2.4–2.485 GHz) and upper (5.15–5.35 and 5.725–5.875 GHz) Wireless local area network frequency bands. The required backlobe suppression and impedance match are obtained by placing a multiresonant high impedance surface (HIS) in close proximity to the radiating aperture. Simulated and measured radiation patterns are shown at the center frequency of all three channels and a comparison of the key performance metrics is made with free space and metal backed antenna arrangements to demonstrate the enhancements which are attributed to the HIS reflector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design, fabrication, and measured results are presented for a reconfigurable reflectarray antenna based on liquid crystals (LCs)which operates above 100 GHz. The antenna has been designed to provide beam scanning capabilities over a wide angular range, a large bandwidth,and reduced side-lobe level (SLL). Measured radiation patterns are in good agreement with simulations, and show that the antenna generates an electronically steerable beam in one plane over an angular range of 55◦ in the frequency band from 96 to 104 GHz. The SLL is lower than −13 dB for all the scan angles and −18 dB is obtained over 16% of the scan range. The measured performance is significantly better than previously published results for this class of electronically tunable antenna, and moreover, veri-fies the accuracy of the proposed procedure for LC modeling and antenna design.