3 resultados para Antenna Characterization

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, an analysis of radio channel characteristics for single- and multiple-antenna bodyworn systems for use in body-to-body communications is presented. The work was based on an extensive measurement campaign conducted at 2.45 GHz representative of an indoor sweep and search scenario for fire and rescue personnel. Using maximum-likelihood estimation in conjunction with the Akaike information criterion (AIC), five candidate probability distributions were investigated and from these the kappa - mu distribution was found to best describe small-scale fading observed in the body-to-body channels. Additional channel parameters such as autocorrelation and the cross-correlation coefficient between fading signal envelopes were also analyzed. Low cross correlation and small differences in mean signal levels between potential dual-branch diversity receivers suggested that the prospect of successfully implementing diversity in this type application is extremely good. Moreover, using selection combination, maximal ratio, and equal gain combining, up to 8.69-dB diversity gain can be made available when four spatially separated antennas are used at the receiver. Additional improvements in the combined envelopes through lower level crossing rates and fade durations at low signal levels were also observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of a multi-band antenna consisting of a microstrip patch with two U-slots is designed and tested for use in aircraft cabin wireless access points. The objective of this paper is to evaluate this antenna that covers most of the current wireless bands from 1.7GHz to 5.85GHz.A specially designed wideband probe antenna is used for characterization
of field radiated from this antenna. This measurement setup gives room for future development like human presence in the cabin, the fading effects, and the path loss between transmitter and receiver.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wearable antenna performance measurements were used to characterize a synthetic variable layered phantom testbed, representative of human tissue for operation in the 868/915 MHz, and 2400 MHz industrial, scientific and medical frequency bands. Antenna radiation efficiency measurements on the phantom were compared with measurements on the thorax region of a human test subject. The results show that the phantom is representative of the human body for the application of wireless vital sign monitors, where conductive connections are made to the tissue.