6 resultados para Amiloride
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
BACKGROUND:
Acid-sensing ion channels (ASIC) are a family of acid-activated ligand-gated cation channels. As tissue acidosis is a feature of inflammatory conditions, such as allergic rhinitis (AR), we investigated the expression and function of these channels in AR.
OBJECTIVES:
The aim of the study was to assess expression and function of ASIC channels in the nasal mucosa of control and AR subjects.
METHODS:
Immunohistochemical localization of ASIC receptors and functional responses to lactic acid application were investigated. In vitro studies on cultured epithelial cells were performed to assess underlying mechanisms of ASIC function.
RESULTS:
Lactic acid at pH 7.03 induced a significant rise in nasal fluid secretion that was inhibited by pre-treatment with the ASIC inhibitor amiloride in AR subjects (n = 19). Quantitative PCR on cDNA isolated from nasal biopsies from control and AR subjects demonstrated that ASIC-1 was equally expressed in both populations, but ASIC-3 was significantly more highly expressed in AR (P < 0.02). Immunohistochemistry confirmed significantly higher ASIC-3 protein expression on nasal epithelial cells in AR patients than controls (P < 0.01). Immunoreactivity for EPO+ eosinophils in both nasal epithelium and submucosa was more prominent in AR compared with controls. A mechanism of induction of ASIC-3 expression relevant to AR was suggested by the finding that eosinophil peroxidase (EPO), acting via ERK1/2, induced the expression of ASIC-3 in epithelial cells. Furthermore, using a quantitative functional measure of epithelial cell secretory function in vitro, EPO increased the air-surface liquid depth via an ASIC-dependent chloride secretory pathway.
CONCLUSIONS:
This data suggests a possible mechanism for the observed association of eosinophils and rhinorrhoea in AR and is manifested through enhanced ASIC-3 expression.
Resumo:
Cultured primary epithelial cells are used to examine inflammation in cystic fibrosis (CF). We describe a new human model system using cultured nasal brushings. Nasal brushings were obtained from 16 F508del homozygous patients and 11 healthy controls. Cells were resuspended in airway epithelial growth medium and seeded onto collagen-coated flasks and membranes for use in patch-clamp, ion transport, and mediator release assays. Viable cultures were obtained with a 75% success rate from subjects with CF and 100% from control subjects. Amiloride-sensitive epithelial Na channel current of similar size was present in both cell types while forskolin-activated CF transmembrane conductance regulator current was lacking in CF cells. In Ussing chambers, cells from CF patients responded to UTP but not to forskolin. Spontaneous and cytomix-stimulated IL-8 release was similar (stimulated 29,448 ± 9,025 pg/ml; control 16,336 ± 3,308 pg/ml CF; means ± SE). Thus nasal epithelial cells from patients with CF can be grown from nasal brushings and used in electrophysiological and mediator release studies in CF research.
Resumo:
The Hippo pathway restricts the activity of transcriptional coactivators TAZ (WWTR1) and YAP. TAZ and YAP are reported to be overexpressed in various cancers, however, their prognostic significance in colorectal cancers remains unstudied. The expression levels of TAZ and YAP, and their downstream transcriptional targets, AXL and CTGF, were extracted from two independent colon cancer patient datasets available in the Gene Expression Omnibus database, totaling 522 patients. We found that mRNA expressions of both TAZ and YAP were positively correlated with those of AXL and CTGF (p<0.05). High level mRNA expression of TAZ, AXL or CTGF significantly correlated with shorter survival. Importantly, patients co-overexpressing all 3 genes had a significantly shorter survival time, and combinatorial expression of these 3 genes was an independent predictor for survival. The downstream target genes for TAZ-AXL-CTGF overexpression were identified by Java application MyStats. Interestingly, genes that are associated with colon cancer progression (ANTXR1, EFEMP2, SULF1, TAGLN, VCAN, ZEB1 and ZEB2) were upregulated in patients co-overexpressing TAZ-AXL-CTGF. This TAZ-AXL-CTGF gene expression signature (GES) was then applied to Connectivity Map to identify small molecules that could potentially be utilized to reverse this GES. Of the top 20 small molecules identified by connectivity map, amiloride (a potassium sparing diuretic,) and tretinoin (all-trans retinoic acid) have shown therapeutic promise in inhibition of colon cancer cell growth. Using MyStats, we found that low level expression of either ANO1 or SQLE were associated with a better prognosis in patients who co-overexpressed TAZ-AXL-CTGF, and that ANO1 was an independent predictor of survival together with TAZ-AXL-CTGF. Finally, we confirmed that TAZ regulates Axl, and plays an important role in clonogenicity and non-adherent growth in vitro and tumor formation in vivo. These data suggest that TAZ could be a therapeutic target for the treatment of colon cancer.
Resumo:
Burkholderia cepacia infection in cystic fibrosis (CF) patients is associated with significant morbidity and mortality, yet no definitive treatment is currently available. This report describes a new approach to treat B. cepacia infection in CF patients, using a combination of amiloride and tobramycin aerosols. Four adults with the typical clinical syndrome of CF were recruited after repeated positive sputum cultures for B. cepacia. Aerosols of amiloride and tobramycin were given three times daily for 1-6 months, and repeated sputum cultures were collected to assess efficacy. Three of the four patients treated with the combined therapy eradicated B. cepacia from their sputum cultures for at least 2 yrs, and there were no adverse events. This novel combination may provide a new therapeutic option for Burkholderia cepacia infections. Furthermore, the strategy of combining antibiotics with ion transport agents may have ramifications for the treatment of other multi-resistant organisms.
Resumo:
Purpose: Activation of the transient receptor potential channels, TRPC6, TRPM4, and TRPP1 (PKD2), has been shown to contribute to the myogenic constriction of cerebral arteries. In the present study we sought to determine the potential role of various mechanosensitive TRP channels to myogenic signaling in arterioles of the rat retina.
Methods: Rat retinal arterioles were isolated for RT-PCR, Fura-2 Ca2+ microfluorimetry, patch-clamp electrophysiology, and pressure myography studies. In some experiments, confocal immunolabeling of wholemount preparations was used to examine the localization of specific mechanosensitive TRP channels in retinal vascular smooth muscle cells (VSMCs).
Results: Reverse transcription-polymerase chain reaction analysis demonstrated mRNA expression for TRPC1, M7, V1, V2, V4, and P1, but not TRPC6 or M4, in isolated retinal arterioles. Immunolabeling revealed plasma membrane, cytosolic and nuclear expression of TRPC1, M7, V1, V2, V4, and P1 in retinal VSMCs. Hypoosmotic stretch-induced Ca2+ influx in retinal VSMCs was reversed by the TRPV2 inhibitor tranilast and the nonselective TRPP1/V2 antagonist amiloride. Inhibitors of TRPC1, M7, V1, and V4 had no effect. Hypoosmotic stretch-activated cation currents were similar in Na+ and Cs+ containing solutions suggesting no contribution by TRPP1 channels. Direct plasma membrane stretch triggered cation current activity that was blocked by tranilast and specific TRPV2 pore-blocking antibodies and mimicked by the TRPV2 activator, Δ9-tetrahydrocannabinol. Preincubation of retinal arterioles with TRPV2 blocking antibodies prevented the development of myogenic tone.
Conclusions: Our results suggest that retinal VSMCs express a range of mechanosensitive TRP channels, but only TRPV2 appears to contribute to myogenic signaling in this vascular bed.