38 resultados para Aluminum plates
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
We have investigated the angular variation in elastic x-ray scattering from a dense, laser-shock-compressed aluminum foil. A comparison of the experiment with simulations using an embedded atom potential in a molecular dynamics simulation shows a significantly better agreement than simulations based on an unscreened one-component plasma model. These data illustrate, experimentally, the importance of screening for the dense plasma static structure factor.
Resumo:
A detailed theoretical analysis has been carried out to study efficient heating due to microwaves for one-dimensional (1D) oil–water emulsion samples placed on various ceramic, metallic (reflective) and ceramic–metallic composite supports. Two typical emulsion systems are considered such as oil-in-water (o/w) and water-in-oil (w/o). A preliminary study has been carried out via average power vs emulsion thickness diagram to estimate microwave power absorption within emulsion samples for various cases. The maxima in average power, also termed as ‘resonances’, are observed for specific emulsion thicknesses and the two consecutive resonances of significant magnitudes are termed as R1 and R2 modes. For both o/w and w/o emulsions, it is observed that microwave power absorption is enhanced in presence of metallic and composite supports during both R1 and R2 modes. The efficient heating strategies characterized by ‘large heating rates’ with ‘minimal thermal runaway’ i.e. uniform temperature distributions within the sample have been assessed for each type of emulsion. Based on the detailed spatial distributions of power and temperature for various cases, SiC-metallic composite support may be recommended as an optimal heating strategy for o/w samples with higher oil fractions (0.45) whereas metallic and Alumina-metallic composite supports may be favored for samples with smaller oil fractions (=0.3) during R1 mode. For w/o samples, SiC-metallic composite support may be suitable heating strategy for all ranges of water fractions during R1 mode. During R2 mode, metallic and Alumina-metallic composite supports are favored for both o/w and w/o emulsion samples. Current study recommends the efficient way to use microwaves in a single mode waveguide and the heating strategy can be suitably extended for heating of any other emulsions for which dielectric properties are easily measurable or available in the literature.
Resumo:
By use of high intensity XUV radiation from the FLASH free-electron laser at DESY, we have created highly excited exotic states of matter in solid-density aluminum samples. The XUV intensity is sufficiently high to excite an inner-shell electron from a large fraction of the atoms in the focal region. We show that soft-x-ray emission spectroscopy measurements reveal the electronic temperature and density of this highly excited system immediately after the excitation pulse, with detailed calculations of the electronic structure, based on finite-temperature density functional theory, in good agreement with the experimental results.
Resumo:
Previous work has demonstrated the potential to introduce plate element sub-stiffening to increase the local stability and thus static strength performance of integrally machined aluminium alloy stiffened panels. The introduction of plate element prismatic sub-stiffening modifies local plate buckling behaviour and within realistic design constraints, may produce sizable performance gains with equivalent mass designs. This article examines through experimental and computational analysis the potential of non-prismatic sub-stiffening for tailoring local plate stability performance. Using non-prismatic sub-stiffening, the experimental work demonstrates potential initial buckling performance gains with equivalent mass designs (+185%), and computationally, potential mass savings with equivalent static strength performance designs (-9.4%). (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Electron tunnelling spectroscopy, developed to extract superconductive metals the electron-phonon spectral density, $\alpha^2F(\nu)$, is found to be a powerful tool also for extracting a more realistic pseudopotential from such metals. The pseudopotential so extracted has a range of surprising but physically reasonable properties and regenerates $\alpha^2F(\nu)$ accurately. Free from most of its long-standing uncertainties, thie pseudopotential may be useful in a number of active fields.
Resumo:
Filamentary ionization tracks have been observed via optical probing inside Al-coated glass targets after the interaction of a picosecond 20-TW laser pulse at intensities above 10(19) W/cm(2). The tracks, up to 700 mu m in length and between 10 and 20 mu m in width, originate from the focal spot region of the laser beam. Simulations performed with 3D particle-in-cell and 2D Fokker-Planck hybrid codes indicate that the observations are consistent with ionization induced in the glass target by magnetized, collimated beams of high-energy electrons produced during the laser interaction.