178 resultados para Alkali activated

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alkali activated binders, based on ash and slag, also known as geopolymers, can play a key role in reducing the carbon footprint of the construction sector by replacing ordinary Portland cement in some concretes. Since 1970s, research effort has been ongoing in many research institutions. In this study, pulverized fuel ash (PFA) from a UK power plant, ground granulated blast furnace slag (GGBS) and combinations of the two have been investigated as geopolymer binders for concrete applications. Activators used were sodium hydroxide and sodium silicate solutions. Mortars with sand/binder ratio of 2.75 with several PFA and GGBS combinations have been mixed and tested. The optimization of alkali dosage (defined as the Na2O/binder mass ratio) and modulus (defined as the Na2O/SiO2 mass ratio) resulted in strengths in excess of 70 MPa for tested mortars. Setting time and workability have been considered for the identification of the best combination of PFA/GGBS and alkali activator dosage for different precast concrete products. Geopolymer concrete building blocks have been replicated in laboratory and a real scale factory trial has been successfully carried out. Ongoing microstructural characterization is aiming to identify reaction products arising from PFA/GGBS combinations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alkali activated slag (AAS) is an alternative cementitious material. Sodium silicate solution is usually used to activate ground granulated blast furnace slag to produce AAS. As a consequence, the pore solution chemistry of AAS differs from that of Portland cement (PC). Although AAS offers many advantages over PC, such as higher strength, superior resistance to acid and sulphate environments and lower embodied carbon due to 100% PC replacement, there is a need to assess its performance against chloride induced corrosion duo to its different pore solution chemistry. For PC systems, resistivity measurement, as a type of nondestructive test, is usually used to evaluate its chloride diffusivity and the corrosion rate of the embedded steel. However, due to the different pore solution chemistry present in the different AAS systems, the application of this test in AAS concretes would be questionable as the resistivity of concrete is highly dependent on its conductivity of the pore solution. Therefore, a study was carried out using twelve AAS concretes mixes, the results of which are reported in this paper. The AAS mixes were designed with alkali concentration of 4%, 6% and 8% (Na2O% of the mass of slag) and modulus (Ms) of sodium silicate solution of 0.75, 1.00, 1.50 and 2.00. A PC concrete with the same binder content as the AAS concretes was also studied as a reference. The chloride diffusion coefficient was determined using a non-steady state chloride diffusion test (NT BUILD 443). The resistivity of the concretes before the diffusion test was also measured. Macrocell corrosion current (corrosion rate) for steel rods embedded in the concretes was measured whilst subjecting the concretes to a cyclic chloride ponding regime (1 day ponded with salt solution and 6 days drying). The results showed that the AAS concretes had lower chloride diffusivity with associated higher resistivity than the PC concrete. The measured corrosion rate was also lower for the AAS concretes. However, unlike the PC, in which a higher resistivity yields a lower diffusivity and corrosion rate, there was no relationship apparent between the resistivity and either the diffusivity or the corrosion rate of steel for the AAS concretes. This is assigned to the variation of the pore solution composition of the AAS concretes. This also means that resistivity measurements cannot be depended on for assessing the chloride induced corrosion resistance of AAS concretes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alkali activated slag (AAS) is a credible alternative to Portland cement (PC) based binder systems. The superior strength gain and low embodied carbon make it a potential binder for next generation concretes. However there is little known about the long term durability of AAS systems, especially the chloride transport and subsequent corrosion of reinforcing steel.
In this study, chloride transport through 12 AAS concretes with different alkali concentrations (Na2O% of mass of slag) and different modulus (Ms) of sodium silicate solution activator was investigated. A non-steady state chloride diffusion test was used for this study due to its similarity to the real exposure environment in terms of chloride transport through concrete. The results showed that the chloride concentration at the surface (Cs) of AAS concretes was higher than that for PC concrete.
However, lower non-steady state chloride diffusion coefficient (Dnssd) was obtained for the AAS concretes. The Dnssd of the AAS concretes decreased with the increase of Na2O% and Ms of 1.50 gave the lowest Dnssd. The results are encouraging and it can be concluded that AAS concrete offers a superior performance in terms of chloride transport.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The alkali activation of waste products has become a widespread topic of research, mainly due to environmental benefits. Portland cement and alkali-activated mortar samples were prepared to compare their resistance to silage effluent which contains lactic acid. The mechanism of attack on each sample has also been investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth of the construction industry worldwide poses a serious concern on the sustainability of the building material production chain, mainly due to the carbon emissions related to the production of Portland cement. On the other hand, valuable materials from waste streams, particularly from the metallurgical industry, are not used at their full potential. Alkali activated concrete (AAC) has emerged in the last years as a promising alternative to traditional Portland cement based concrete for some applications. However, despite showing remarkable strength and durability potential, its utilisation is not widespread, mainly due to the lack of broadly accepted standards for the selection of suitable mix recipes fulfilling design requirements, in particular workability, setting time and strength. In this paper, a contribution towards the design development of AAC synthetized from pulverised fuel ash (60%) and ground granulated blast furnace slag (40%) activated with a solution of sodium hydroxide and sodium silicate is proposed. Results from a first batch of mixes indicated that water content influences the setting time and that paste content is a key parameter for controlling strength development and workability. The investigation indicated that, for the given raw materials and activator compositions, a minimum water to solid (w/s) ratio of 0.37 was needed for an initial setting time of about 1 hour. Further work with paste content in the range of 30% to 33% determined the relationship between workability and strength development and w/s ratio and paste content. Strengths in the range of 50 - 60 MPa were achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alkali activated binders, based on ash and slag, also known as geopolymers, can play a key role in reducing the carbon footprint of the construction sector by replacing ordinary Portland cement in some concretes. Since 1970s, research effort has been ongoing in many research institutions. In this study, pulverized fuel ash (pfa) from a UK power plant, ground granulated blast furnace slag (ggbs) and combinations of the two have been investigated as geopolymer binders for concrete applications. Activators used were sodium hydroxide and sodium silicate solutions. Mortars with sand/binder ratio of 2.75 with several pfa and ggbs combinations have been mixed and tested. The optimization of alkali dosage (defined as the Na2O/binder mass ratio) and modulus (defined as the Na2O/SiO2 mass ratio) resulted in strengths in excess of 70 MPa for tested mortars. Setting time and workability have been considered for the identification of the best combination of pfa/ggbs and alkali activator dosage for different precast concrete products. Geopolymer concrete building blocks have been replicated in laboratory and a real scale factory trial has been successfully carried out. Ongoing microstructural characterization is aiming to identify reaction products arising from pfa/ggbs combinations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the relative performance of alkali activated slag (AAS) concretes in comparison to Portland cement (PC) counterparts for chloride transport and resulting corrosion of steel bars is not clear, an investigation was carried out and the results are reported in this paper. The effect of alkali concentration and modulus of sodium silicate solution used in AAS was studied. Chloride transport and corrosion properties were assessed with the help of electrical resistivity, non-steady state chloride diffusivity, onset of corrosion, rate of corrosion and pore solution chemistry. It was found that: (i) although chloride content at surface was higher for the AAS concretes, they had lower chloride diffusivity than PC concrete; (ii) pore structure, ionic exchange and interaction effect of hydrates strongly influenced the chloride transport in the AAS concretes; (iii) steel corrosion resistance of the AAS concretes was comparable to that of PC concrete under intermittent chloride ponding regime, with the exception of 6% Na2O and Ms of 1.5; (iv) the corrosion behaviour of the AAS concretes was significantly influenced by ionic exchange, carbonation and sulphide concentration; (v) the increase of alkali concentration of the activator generally increased the resistance of AAS concretes to chloride transport and reduced its resulting corrosion, and a value of 1.5 was found to be an optimum modulus for the activator for improving the chloride transport and the corrosion resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The studies on chloride induced corrosion of steel bars in alkali activated slag (AAS) concretes are scarcely reported in the past. In order to make this issue clearer and compare the corrosion performance of AAS with Portland cement (PC) counterpart, an investigation was carried out and the results are reported in this paper. Corrosion properties were assessed with the help of rate of corrosion, electrical resistivity and pore solution chemistry. It was found that: (i) steel corrosion resistance of the AAS concretes was comparable or in some cases even worse than that of Portland cement (PC) concrete under intermittent chloride ponding regime; (ii) the corrosion behaviour of the AAS concretes was significantly influenced by ionic exchange, carbonation and sulphide concentration; (iii) the increase of alkali concentration of the activator generally reduced chloride resulting corrosion, and a value of 1.5 was found to be an optimum modulus for the activator for improving the corrosion resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study reports an experimental investigation designed to assess the influence of near-surface moisture contents on permeation properties of alkali-activated slag concrete (AASC). Five different drying periods (5, 10, 15, 20 and 25 days) and three AASC and normal concretes with compressive strength grades ranging from C30 to C60 were considered. Assessment of moisture distribution was
achieved using 100 mm diameter cores with drilled cavities. Results indicate that air permeability of AASC is very sensitive to the moisture content and its spatial distribution, especially at relative humidity above 65%. To control the influence of moisture on permeation testing, the recommendation of this paper is that AASC specimens should be dried in controlled conditions at 40 C for 10 days prior to testing. It was also concluded from this study that AASC tends to perform less well, in terms of air permeability and sorptivity, than normal concrete for a given strength grade. This conclusion reinforces the need to further examine AASC properties prior to its widespread practical use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comparing the chloride ingress between tradition concretes and AASCs is worthwhile to prove the possibility of increasing concrete lifetime in proximity to sea and deciding while such concretes are practical for use. Findings show that compared to the PC concretes, the AAS concretes have lower rate of chloride ingress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT

One of the binder systems with low environmental footprint is alkali activated slag concretes (AASC), made by adding alkalis such as sodium hydroxide and sodium silicate to industrial by-products such as ground granulated blast furnace slag (GGBS). Whilst they have the similar behaviour as that of traditional cement systems in terms of strength and structural behaviour, AASC do exhibit superior performance in terms of abrasion and acid resistance and fire protection.
In this article, the authors focus their attention on chloride ingress into different grades of AASC. The mix variables in AASC included water-to-binder, binder to aggregate ratio, percentage of alkali and the SiO2/Na2O ratio (silica modulus, Ms). The first challenge is to get mixes for different range of workability (with slump values from 40mm to 240mm) and reasonable early age and long term compressive strength according to each one. Then the chloride diffusion and migration in those mixes were measured and compared with same normal concretes in the existed literature based on chloride penetration depth. Comparing the chloride ingress between tradition concretes and AASCs is worthwhile to prove the possibility of increasing concrete lifetime in proximity to sea and deciding while such concretes are practical for use. Findings show that compared to the PC concretes, the AAS concretes have lower rate of chloride ingress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT: Researchers are focusing their attention on alternative binder systems using 100% supplementary cementitious materials as it allows better control over the microstructure formation and low to moderate environmental footprint. One such system being considered is alkali activated slag concretes (AASC), made by adding alkalis such as sodium hydroxide and sodium silicate to ground granulated blast furnace slag (GGBS). Whilst they have a similar behaviour as that of traditional cement systems in terms of strength and structural behaviour, AASC are reported to exhibit superior performance in terms of abrasion,acid resistance and fire protection.
In this article, the authors investigate chloride ingress into different grades of AASC. The mix variables in AASC included water to binder, and binder to aggregate ratio, percentage of alkali and the SiO2/Na2O ratio (silica modulus, Ms). The first challenge was to develop mixes for different range of workability (with slump values from 40mm to 240mm) and reasonable early age and long term compressive strength. Further chloride ingress into those mixes were assessed and compared with the data from normal concretes based on literature. Findings show that compared to the PC concretes, the AAS concretes have lower rate of chloride ingress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The consequence of sulfate attack on geopolymer concrete, made from an alkali activated natural pozzolan (AANP) has been studied in this paper. Changes in the compressive strength, expansion and capillary water absorption of specimens have been investigated combined with phases determination by means of X-ray diffraction. At the end of present investigation which was to evaluate the performance of natural alumina silica based geopolymer concrete in sodium and magnesium sulfate solution, the loss of compressive strength and percentage of expansion of AANP concrete was recorded up to 19.4% and 0.074, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is possible to synthesize environmentally friendly cementitious construction materials from alkali-activated natural pozzolans. The effect of the alkaline medium on the strength of alkali-activated natural pozzolans has been investigated and characterised. This paper highlights the effect of the type and form of the alkaline activator, the dosage of alkali and the SiO2/Na2O ratio (silica modulus, Ms) when using water–glass solutions and different curing conditions on the geopolymerisation of natural pozzolans. Activation of natural and calcined pozzolan for production of geopolymeric binder was verified by using Taftan andesite and Shahindej dacite from Iran as a solid precursor. The optimum range for each factor is suggested based on the different effects they have on compressive strength. The concentration of dissolving silicon, aluminium and calcium in alkaline solution, the formation of gel phase and the factors affecting this have been studied by using leaching tests, ICP–AES, and FTIR.