10 resultados para Algal Secondary Metabolites

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Efficient control of the illegal use of anabolic steroids must both take into account metabolic patterns and associated kinetics of elimination; in this context, an extensive animal experiment involving 24 calves and consisting of three administrations of 17 beta-estradiol 3-benzoate and 17 beta-nandrolone laureate esters was carried out over 50 days. Urine samples were regularly collected during the experiment from all treated and non-treated calves. For sample preparation, a single step high throughput protocol based on 96-well C-18 SPE was developed and validated according to the European Decision 2002/657/EC requirements. Decision limits (CC alpha) for steroids were below 0.1 mu g L-1, except for 19-norandrosterone (CC alpha = 0.7 mu g L-1) and estrone (CC alpha = 0.3 mu g L-1). Kinetics of elimination of the administered 17 beta-estradiol 3-benzoate and 17 beta-nandrolone laureate were established by monitoring 17 beta-estradiol, 17 alpha-estradiol, estrone and 17 beta-nandrolone, 17 alpha-nandrolone, 19-noretiocholanolone, 19-norandrostenedione, respectively. All animals demonstrated homogeneous patterns of elimination both from a qualitative (metabolite profile) and quantitative point of view (elimination kinetics in urine). Most abundant metabolites were 17 alpha-estradiol and 17 alpha-nandrolone (> 20 and 2 mg L-1, respectively after 17 beta-estradiol 3-benzoate and 17 beta-nandrolone laureate administration) whereas 17 beta-estradiol, estrone, 17 beta-nandrolone, 19-noretiocholanolone and 19-norandrostenedione were found as secondary metabolites at concentration values up to the mu g L-1 level. No significant difference was observed between male and female animals. The effect of several consecutive injections on elimination profiles was studied and revealed a tendency toward a decrease in the biotransformation of administered steroid 17 beta form. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Over the past few decades, there has been an increased frequency and duration of cyanobacterial Harmful Algal Blooms (HABs) in freshwater systems globally. These can produce secondary metabolites called cyanotoxins, many of which are hepatotoxins, raising concerns about repeated exposure through ingestion of contaminated drinking water or food or through recreational activities such as bathing/ swimming. An ultra-performance liquid chromatography tandem mass spectrometry (UPLC–MS/MS) multi-toxin method has been developed and validated for freshwater cyanotoxins; microcystins-LR, -YR, -RR, -LA, -LY and -LF, nodularin, cylindrospermopsin, anatoxin-a and the marine diatom toxin domoic acid. Separation was achieved in around 9 min and dual SPE was incorporated providing detection limits of between 0.3 and 5.6 ng/L of original sample. Intra- and inter-day precision analysis showed relative
standard deviations (RSD) of 1.2–9.6% and 1.3–12.0% respectively. The method was applied to the analysis of aquatic samples (n = 206) from six European countries. The main class detected were the hepatotoxins; microcystin-YR (n = 22), cylindrospermopsin (n = 25), microcystin-RR (n = 17), microcystin-LR (n = 12), microcystin-LY (n = 1), microcystin-LF (n = 1) and nodularin (n = 5). For microcystins, the levels detected ranged from 0.001 to 1.51 mg/L, with two samples showing combined levels above the guideline set by the WHO of 1 mg/L for microcystin-LR. Several samples presented with multiple toxins indicating the potential for synergistic effects and possibly enhanced toxicity. This is the first published pan European survey of freshwater bodies for multiple biotoxins, including two identified for the first time; cylindrospermopsin in Ireland and nodularin in Germany, presenting further incentives for improved monitoring and development of strategies to mitigate human exposure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Several potential approaches to the enzyme-catalysed synthesis of arene trans-diols have been examined including epoxidation/hydrolysis, bis-benzylic hydroxylation, cis-dihydroxylation/alcohol dehydrogenation/ketone reduction, cisdihydroxylation/cis-trans isomerisation. and multi-enzyme synthesis of trans-dihydrodiol secondary metabolites from primary metabolites. The lack of general applicability of these enzymatic methods has led to the development of several chemoenzymatic routes for the synthesis of a series of trans-dihydrodiols from the readily available cis-dihydrodiol precursors. Partial hydrogenation of cis-dihydrodiol metabolites to yield the corresponding cis-tetrahydrodiols followed by a regioselective Mitsunobu inversion process gave trans-tetrahydrodiols that were in turn converted to trans-dihydrodiols. The formation of anti-benzene dioxides or iron tricarbonyl complexes from the corresponding cis-dihydrodiol precursors provided shorter and more convenient chemoenzymatic routes to trans-dihydrodiols. The application of cis-dihydrodiol metabolites of polycyclic azaarenes in the synthesis of the corresponding arene oxides followed by chemical hydrolysis provides a convenient route to trans-dihydrodiols. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pyrrolizidine alkaloids (PAs) are a group of plant secondary metabolites with carcinogenic and hepatotoxic properties. When PA-producing plants contaminate crops, toxins can be transferred through the food chain and cause illness in humans and animals, most notably hepatic veno-occlusive disease. Honey has been identified as a direct risk of human exposure. The European Food Safety Authority has recently identified four groups of PAs that are of particular importance for food and feed: senecionine-type, lycopsamine-type, heliotrine-type and monocrotaline-type. Liquid or gas chromatography methods are currently used to detect PAs but there are no rapid screening assays available commercially. Therefore, the aim of this study was to develop a rapid multiplex ELISA test for the representatives of three groups of alkaloids (senecionine, lycopsamine and heliotrine types) that would be used as a risk-management tool for the screening of these toxic compounds in food and feed. The method was validated for honey and feed matrices and was demonstrated to have a detection capability less than 25 µg/kg for jacobine, lycopsamine, heliotrine and senecionine. The zinc reduction step introduced to the extraction procedure allows for the additional detection of the presence of N-oxides of PAs. This first multiplex immunoassay for PA detection with N-oxide reduction can be used for the simultaneous screening of 21 samples for >12 PA analytes. Honey samples (n?=?146) from various origins were analysed for PA determination. Six samples were determined to contain measurable PAs >25 µg/kg by ELISA which correlated to >10 µg/kg by LC-MS/MS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite plant secondary metabolites being major determinants of species interactions and ecosystem processes, their role in the maintenance of biodiversity has received little attention. In order to investigate the relationship between chemical and biological diversity in a natural ecosystem, we considered the impact of chemical diversity in individual Scots pine trees (Pinus sylvestris) on species richness of associated ground vegetation. Scots pine trees show substantial genetically determined constitutive variation between individuals in concentrations of a group of secondary metabolites, the monoterpenes. When the monoterpenes of particular trees were assessed individually, there was no relationship with species richness of associated ground flora. However, the chemical diversity of monoterpenes of individual trees was significantly positively associated with the species richness of the ground vegetation beneath each tree, mainly the result of an effect among the non-woody vascular plants. This correlation suggests that the chemical diversity of the ecosystem dominant species has an important role in shaping the biodiversity of the associated plant community. The extent and significance of this effect, and its underlying processes require further investigation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microcystins and nodularin are toxic cyanobacterial secondary metabolites produced by cyanobacteria that pose a threat to human health in drinking water. Conventional water treatment methods often fail to remove these toxins. Advanced oxidation processes such as TiO2 photocatalysis have been shown to effectively degrade these compounds. A particular issue that has limited the widespread application of TiO2 photocatalysis for water treatment has been the separation of the nanoparticulate power from the treated water. A novel catalyst format, TiO2 coated hollow glass spheres (Photospheres™), is far more easily separated from treated water due to its buoyancy. This paper reports the photocatalytic degradation of eleven microcystin variants and nodularin in water using Photospheres™. It was found that the Photospheres™ successfully decomposed all compounds in 5 minutes or less. This was found to be comparable to the rate of degradation observed using a Degussa P25 material, which has been previously reported to be the most efficient TiO2 for photocatalytic degradation of microcystins in water. Furthermore, it was observed that the degree of initial catalyst adsorption of the cyanotoxins depended on the amino acid in the variable positions of the microcystin molecule. The fastest degradation (2 minutes) was observed for the hydrophobic variants (microcystin-LY, -LW, -LF). Suitability of UV-LEDs as an alternative low energy light source was also evaluated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Prominent theories of plant defence have predicted that plants growing on nutrient-poor soils produce more phenolic defence compounds than those on richer soils. Only recently has the Protein Competition Model (PCM) of phenolic allocation suggested that N and P limitation could have different effects because the nutrients are involved in different cellular metabolic processes. 2. We extend the prediction of the PCM and hypothesize that N will have a greater influence on the production of phenolic defensive compounds than P availability, because N limitation reduces protein production and thus competition for phenylalanine, a precursor of many phenolic compounds. In contrast, P acts as a recyclable cofactor in these reactions, allowing protein and hence phenolic production to continue under low P conditions. 3. We test this hypothesis by comparing the foliar concentrations of phenolic compounds in (i) phenotypes of 21 species growing on P-rich alluvial terraces and P-depleted marine terraces in southern New Zealand, and (ii) 87 species growing under similar climates on comparatively P-rich soils in New Zealand vs. P-depleted soils in Tasmania. 4. Foliar P concentrations of plants from the marine terraces were about half those of plants from alluvial soils, and much lower in Tasmania than in New Zealand. However, foliar concentrations of N and phenolic compounds were similar across sites in both comparisons, supporting the hypothesis that N availability is a more important determinant of plant investment in phenolic defensive compounds than P availability. We found no indication that reduced soil P levels influenced plant concentrations of phenolic compounds. There was wide variation in the foliar N and P concentrations among species, and those with low foliar nutrient concentrations produced more phenolics (including condensed tannins). 5. Our study is the first trait comparison extending beyond standard leaf economics to include secondary metabolites related to defence in forest plants, and emphasizes that N and P have different influences on the production of phenolic defence compounds. © 2009 British Ecological Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fumonisin B1 (FB1) and beauvericin (BEA) are secondary metabolites of filamentous fungi, which under appropriate temperature and humidity conditions may develop on various foods and feeds. To date few studies have been performed to evaluate the toxicological and endocrine disrupting effects of FB1 and BEA. The present study makes use of various in vitro bioassays including; oestrogen, androgen, progestagen and glucocorticoid reporter gene assays (RGAs) for the study of nuclear receptor transcriptional activity, the thiazolyl blue tetrazolium bromide (MTT) assay to monitor cytotoxicity and high content analysis (HCA) for the detection of pre-lethal toxicity in the RGA and Caco-2 human colon adenocarcinoma cells. At the receptor level, 0.001-10μM BEA or FB1 did not induce any agonist responses in the RGAs. However at non-cytotoxic concentrations, an antagonistic effect was exhibited by FB1 on the androgen nuclear receptor transcriptional activity at 10μM and BEA on the progestagen and glucocorticoid receptors at 1μM. MTT analysis showed no decrease in cell viability at any concentration of FB1, whereas BEA showed a significant decrease in viability at 10μM. HCA analysis confirmed that the reduction in the progestagen receptor transcriptional activity at 1μM BEA was not due to pre-lethal toxicity. In addition, BEA (10μM) induced significant toxicity in both the TM-Luc (progestagen responsive) and Caco-2 cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A chiral gas chromatographic assay has been developed for quantitative analysis of ethosuximide and its major metabolites in rat urine. The extraction procedure was found to be precise and reproducible. Recovery was in the range of 94-98%, intraday CV(%) was 0.92% for (S)-ethosuximide (50 mug/ml) and 0.51% for (R)-ethosuximide (50 mug/ml). Interday CV(%) was 1.12% for (S)-ethosuximide and 0.72% for (R)-ethosuximide. The limit of detection was determined to be around 0.01 mug/ml for each enantiomer. Following administration of rac-ethosuximide by i.v., i.p. and oral routes, unchanged ethosuximide was detected in urine up to 72h after drug administration. The appearance of all detected metabolites occurred Within 24h of drug administration. Significantly more (S)-ethosuximide was excreted unchanged than (R)-ethosuximide with all three routes studied. A substantial amount of the drug was eliminated as the 2-(1-hydroxyethyl)-2-methylsuccinimide (2 pairs of diastereoisomers). Much less drug was eliminated as the 2-ethyl-3-hydroxy-2-methylsuccinimide with only one diastereoisomer observed. Examination of the one pair of diastereoisomers of 2-(1-hydroxyethyl)-2-methylsuccinimide that was resolved showed preferential excretion of one isomer. Comparison of both pairs of diastereoisomers showed that one pair was formed in preference to the other with a ratio of approximately 0.8:1. It is concluded that stereoselective metabolism of ethosuximide occurs. Copyright (C) 2001 John Wiley & Sons, Ltd. Author Keywords: chiral pharmacokinetics; ethosuximide enantiomers; metabolism; rat; urinary excretion; gas chromatography