3 resultados para Air cushion vehicles.
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
In recent years unmanned vehicles have grown in popularity, with an ever increasing number of applications in industry, the military and research within air, ground and marine domains. In particular, the challenges posed by unmanned marine vehicles in order to increase the level of autonomy include automatic obstacle avoidance and conformance with the Rules of the Road when navigating in the presence of other maritime traffic. The USV Master Plan which has been established for the US Navy outlines a list of objectives for improving autonomy in order to increase mission diversity and reduce the amount of supervisory intervention. This paper addresses the specific development needs based on notable research carried out to date, primarily with regard to navigation, guidance, control and motion planning. The integration of the International Regulations for Avoiding Collisions at Sea within the obstacle avoidance protocols seeks to prevent maritime accidents attributed to human error. The addition of these critical safety measures may be key to a future growth in demand for USVs, as they serve to pave the way for establishing legal policies for unmanned vessels.
Resumo:
With the introduction of budget airlines and greater competitiveness amongst all airlines, air travel has now become an extremely popular form of travel, presenting its own unique set of risks from food poisoning. Foodborne illness associated with air travel is quite uncommon in the modern era. However, when it occurs, it may have serious implications for passengers and when crew are affected, has the potential to threaten safety. Quality, safe, in-flight catering relies on high standards of food preparation and storage; this applies at the airport kitchens (or at subcontractors' facilities), on the aircraft and in the transportation vehicles which carry the food from the ground source to the aircraft. This is especially challenging in certain countries. Several foodborne outbreaks have been recorded by the airline industry as a result of a number of different failures of these systems. These have provided an opportunity to learn from past mistakes and current practice has, therefore, reached such a standard so as to minimise risk of failures of this kind. This review examines: (i) the origin of food safety in modern commercial aviation; (ii) outbreaks which have occurred previously relating to aviation travel; (iii) the microbiological quality of food and water on board commercial aircraft; and (iv) how Hazard Analysis Critical Control Points may be employed to maintain food safety in aviation travel.
Resumo:
Traditional internal combustion engine vehicles are a major contributor to global greenhouse gas emissions and other air pollutants, such as particulate matter and nitrogen oxides. If the tail pipe point emissions could be managed centrally without reducing the commercial and personal user functionalities, then one of the most attractive solutions for achieving a significant reduction of emissions in the transport sector would be the mass deployment of electric vehicles. Though electric vehicle sales are still hindered by battery performance, cost and a few other technological bottlenecks, focused commercialisation and support from government policies are encouraging large scale electric vehicle adoptions. The mass proliferation of plug-in electric vehicles is likely to bring a significant additional electric load onto the grid creating a highly complex operational problem for power system operators. Electric vehicle batteries also have the ability to act as energy storage points on the distribution system. This double charge and storage impact of many uncontrollable small kW loads, as consumers will want maximum flexibility, on a distribution system which was originally not designed for such operations has the potential to be detrimental to grid balancing. Intelligent scheduling methods if established correctly could smoothly integrate electric vehicles onto the grid. Intelligent scheduling methods will help to avoid cycling of large combustion plants, using expensive fossil fuel peaking plant, match renewable generation to electric vehicle charging and not overload the distribution system causing a reduction in power quality. In this paper, a state-of-the-art review of scheduling methods to integrate plug-in electric vehicles are reviewed, examined and categorised based on their computational techniques. Thus, in addition to various existing approaches covering analytical scheduling, conventional optimisation methods (e.g. linear, non-linear mixed integer programming and dynamic programming), and game theory, meta-heuristic algorithms including genetic algorithm and particle swarm optimisation, are all comprehensively surveyed, offering a systematic reference for grid scheduling considering intelligent electric vehicle integration.