4 resultados para AgentSpeak

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

AgentSpeak is a logic-based programming language, based on the Belief-Desire-Intention (BDI) paradigm, suitable for building complex agent-based systems. To limit the computational complexity, agents in AgentSpeak rely on a plan library to reduce the planning problem to the much simpler problem of plan selection. However, such a plan library is often inadequate when an agent is situated in an uncertain environment. In this paper, we propose the AgentSpeak+ framework, which extends AgentSpeak with a mechanism for probabilistic planning. The beliefs of an AgentSpeak+ agent are represented using epistemic states to allow an agent to reason about its uncertain observations and the uncertain effects of its actions. Each epistemic state consists of a POMDP, used to encode the agent’s knowledge of the environment, and its associated probability distribution (or belief state). In addition, the POMDP is used to select the optimal actions for achieving a given goal, even when facing uncertainty.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AgentSpeak is a logic-based programming language, based on the Belief-Desire-Intention (BDI) paradigm, suitable for building complex agent-based systems. To limit the computational complexity, agents in AgentSpeak rely on a plan library to reduce the planning problem to the much simpler problem of plan selection. However, such a plan library is often inadequate when an agent is situated in an uncertain environment. In this paper, we propose the AgentSpeak+ framework, which extends AgentSpeak with a mechanism for probabilistic planning. The beliefs of an AgentSpeak+ agent are represented using epistemic states to allow an agent to reason about its uncertain observations and the uncertain effects of its actions. Each epistemic state consists of a POMDP, used to encode the agent’s knowledge of the environment, and its associated probability distribution (or belief state). In addition, the POMDP is used to select the optimal actions for achieving a given goal, even when facing uncertainty.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The BDI architecture, where agents are modelled based on their beliefs, desires and intentions, provides a practical approach to develop large scale systems. However, it is not well suited to model complex Supervisory Control And Data Acquisition (SCADA) systems pervaded by uncertainty. In this paper we address this issue by extending the operational semantics of Can(Plan) into Can(Plan)+. We start by modelling the beliefs of an agent as a set of epistemic states where each state, possibly using a different representation, models part of the agent's beliefs. These epistemic states are stratified to make them commensurable and to reason about the uncertain beliefs of the agent. The syntax and semantics of a BDI agent are extended accordingly and we identify fragments with computationally efficient semantics. Finally, we examine how primitive actions are affected by uncertainty and we define an appropriate form of lookahead planning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There has been much interest in the belief–desire–intention (BDI) agent-based model for developing scalable intelligent systems, e.g. using the AgentSpeak framework. However, reasoning from sensor information in these large-scale systems remains a significant challenge. For example, agents may be faced with information from heterogeneous sources which is uncertain and incomplete, while the sources themselves may be unreliable or conflicting. In order to derive meaningful conclusions, it is important that such information be correctly modelled and combined. In this paper, we choose to model uncertain sensor information in Dempster–Shafer (DS) theory. Unfortunately, as in other uncertainty theories, simple combination strategies in DS theory are often too restrictive (losing valuable information) or too permissive (resulting in ignorance). For this reason, we investigate how a context-dependent strategy originally defined for possibility theory can be adapted to DS theory. In particular, we use the notion of largely partially maximal consistent subsets (LPMCSes) to characterise the context for when to use Dempster’s original rule of combination and for when to resort to an alternative. To guide this process, we identify existing measures of similarity and conflict for finding LPMCSes along with quality of information heuristics to ensure that LPMCSes are formed around high-quality information. We then propose an intelligent sensor model for integrating this information into the AgentSpeak framework which is responsible for applying evidence propagation to construct compatible information, for performing context-dependent combination and for deriving beliefs for revising an agent’s belief base. Finally, we present a power grid scenario inspired by a real-world case study to demonstrate our work.