19 resultados para Active oxygen

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mechanism of CO oxidation reactions over undoped and gold-doped CuMnOX (Hopcalite) catalysts has been examined using a temporal analysis of products (TAP) reactor Gold doping has been found to increase the activity of the mixed oxide catalyst significantly however using consecutive pulsing TAP experiments the presence of gold was not found to affect the contribution of the Langmuir-Hinshelwood mechanism Conversely gold doping was found to promote the Mars van Krevelen mechanism Using CO and O-2 multi-pulse TAP experiments the gold was found to modify the catalyst surface such that it stores much more oxygen that is active for the CO oxidation The CO multi-pulse experiments indicated that two distinct types of active oxygen species were found to be involved in the CO oxidation One type was observed in a similar amount on both doped and undoped catalysts and was associated with mixed oxide while the second type was only found on the gold-doped catalyst and was therefore clearly associated with the presence of gold on the catalyst surface The latter was found to be much less active than the oxygen inherent to the oxide but was at a concentration of approximately 10 times larger leading to the enhanced activity observed on gold doping (C) 2010 Elsevier Inc All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

KF, LiF and CsF/A(2)O(3) catalysts with different loadings from 1 to 20 wt% were prepared using aqueous solutions of the alkaline fluoride compounds by wet impregnation of basic mesoporous MSU-type alumina. The catalysts were activated under At at 400 degrees C for 2 h and monitored by in situ XRD measurements. The catalysts were also characterized using several techniques: N-2 adsorption/desorption isotherms at -196 degrees C, FTIR, DR-UV-vis, CO2-TPD, XRD, Al-27 CP/MAS NMR. These characterizations led to the conclusion that the deposition of alkaline fluorides on the alumina surface generates fluoroaluminates and aluminate species. The process is definitivated at 400 degrees C. The fluorine in these structures is less basic than in the parent fluorides, but the oxygen becomes more basic. The catalysts were tested for the transesterification of fatty esters under different experimental conditions using conventional heating, microwave and Ultrasound irradiation. Recycling experiments showed that these catalysts are stable for a limited number of cycles. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For S-nitrosothiols and peroxynitrite to interfere with the activity of mitochondrial complex I, prior transition of the enzyme from its active (A) to its deactive, dormant (D) state is necessary. We now demonstrate accumulation of the D-form of complex I in human epithelial kidney cells after prolonged hypoxia. Upon reoxygenation after hypoxia there was an initial delay in the return of the respiration rate to normal. This was due to the accumulation of the D-form and its slow, substrate-dependent reconversion to the A-form. Reconversion to the A-form could be prevented by prolonged incubation with endogenously generated NO. We propose that the hypoxic transition from the A-form to the D-form of complex I may be protective, because it would act to reduce the electron burst and the formation of free radicals during reoxygenation. However, this may become an early pathophysiological event when NO-dependent formation of S-nitrosothiols or peroxynitrite structurally modifies complex I in its D-form and impedes its return to the active state. These observations provide a mechanism to account for the severe cell injury that follows hypoxia and reoxygenation when accompanied by NO generation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mitochondrial complex I (NADH: ubiquinone oxidoreductase) undergoes reversible deactivation upon incubation at 30-37 degrees C. The active/deactive transition could play an important role in the regulation of complex I activity. It has been suggested recently that complex I may become modified by S-nitrosation under pathological conditions during hypoxia or when the nitric oxide: oxygen ratio increases. Apparently, a specific cysteine becomes accessible to chemical modification only in the deactive form of the enzyme. By selective fluorescence labeling and proteomic analysis, we have identified this residue as cysteine-39 of the mitochondrially encoded ND3 subunit of bovine heart mitochondria. Cysteine-39 is located in a loop connecting the first and second transmembrane helix of this highly hydrophobic subunit. We propose that this loop connects the ND3 subunit of the membrane arm with the PSST subunit of the peripheral arm of complex I, placing it in a region that is known to be critical for the catalytic mechanism of complex I. In fact, mutations in three positions of the loop were previously reported to cause Leigh syndrome with and without dystonia or progressive mitochondrial disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Porous carbon aerogels are prepared by polycondensation of resorcinol (R) and formaldehyde (F)catalyzed by sodium carbonate (C) followed by carbonization of the resultant aerogels at 800? in an inert atmosphere. The porous texture of the carbons has been adjusted by the change of the molar ratio of resorcinol to catalyst (R/C) in the gel precursors in the range of 100 to 500. The porous structure of the aerogels and carbon aerogels are characterized by N2 adsorption-desorption measurements at 77 K. It is found that total pore volume and average pore diameter of the carbons increase with increase in the R/C ratio of the gel precursors.The prepared carbon aerogels are used as active materials in fabrication of composite carbon electrodes. The electrochemical performance of the electrodes has been tested by using them as cathodes in a Li/O2 cell. Through the galvanostatic charge/discharge measurements, it is found that with an increase of R/C ratio, the specific capacity of the Li/O2 cell fabricated from the carbon aerogels increases from 716 to 2077 charge/discharge cycles indicate that the carbon samples possess excellent stability on cycling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Porous carbon aerogels are prepared by polycondensation of resorcinol and formaldehyde catalyzed by sodium carbonate followed by carbonization of the resultant aerogels in an inert atmosphere. Pore structure of carbon aerogels is adjusted by changing the molar ratio of resorcinol to catalyst during gel preparation and also pyrolysis under Ar and activation under CO2 atmosphere at different temperatures. The prepared carbons are used as active materials in fabrication of composite carbon electrodes. The electrochemical performance of the electrodes has been tested in a Li/O2 cell. Through the galvanostatic charge/discharge measurements, it is found that the cell performance (i.e. discharge capacity and discharge voltage) depends on the morphology of carbon and a combined effect of pore volume, pore size and surface area of carbon affects the storage capacity. A Li/O2 cell using the carbon with the largest pore volume (2.195cm3/g) and a wide pore size (14.23 nm) showed a specific capacity of 1290mAh g-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymer based carbon aerogels were prepared by synthesis of a resorcinol formaldehyde gel followed by pyrolysis at 1073K under Ar and activation of the resultant carbon under CO2 at different temperatures. The prepared carbon aerogels were used as active materials in the preparation of cathode electrodes for lithium oxygen cells and the electrochemical performance of the cells was evaluated by galvanostatic charge/discharge cycling and electrochemical impedance measurements. It was shown that the storage capacity and discharge voltage of a Li/O2 cell strongly depend on the porous structure of the carbon used in cathode. EIS results also showed that the shape and value of the resistance in the impedance spectrum of a Li/O2 cell are strongly affected by the porosity of carbon used in the cathode. Porosity changes due to the build up of discharge products hinder the oxygen and lithium ion transfer into the electrode, resulting in a gradual increase in the cell impedance with cycling. The discharge capacity and cycle life of the battery decrease significantly as its internal resistance increases with charge/discharge cycling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Galactokinase catalyses the phosphorylation of galactose at the expense of ATP. Like other members of the GHMP family of kinases it is postulated to function through an active site base mechanism in which Asp-186 abstracts a proton from galactose. This asparate residue was altered to alanine and to asparagine by site-directed mutagenesis of the corresponding gene. This resulted in variant enzyme with no detectable galactokinase activity. Alteration of Arg-37, which lies adjacent to Asp-186 and is postulated to assist the catalytic base, to lysine resulted in an active enzyme. However, alteration of this residue to glutamate abolished activity. All the variant enzymes, except the arginine to lysine substitution, were structurally unstable (as judged by native gel electrophoresis in the presence of urea) compared to the wild type. This suggests that the lack of activity results from this structural instability, in addition to any direct effects on the catalytic mechanism. Computational estimations of the pK(a) values of the arginine and aspartate residues, suggest that Arg-37 remains protonated throughout the catalytic cycle whereas Asp-186 has an abnormally high pK(a) value (7.18). Quantum mechanics/molecular mechanics (QM/MM) calculations suggest that Asp-186 moves closer to the galactose molecule during catalysis. The experimental and theoretical studies presented here argue for a mechanism in which the C-1-OH bond in the sugar is weakened by the presence of Asp-186 thus facilitating nucleophilic attack by the oxygen atom on the gamma-phosphorus of ATP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Freestanding films containing nanocrystalline TiO2 and a suitable electron donor embedded in a cellulose matrix deoxygenate a closed environment (see Figure) upon UV illumination as a result of the photocatalytic properties of TiO2. This opens up the potential use of semiconductor photocatalysis in active packaging to achieve light-driven deoxygenation of closed environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The kinetics of catalysis of a number of new and established heterogeneous O2 catalysts have been studied using Ce(IV) as the oxidant via both the disappearance of the Ce(IV) ions and concomitant appearance of O2. The most active of the catalysts tested utilised a PGM(IV) oxide, usually Ru or Ir, prepared by the Adams method, which appears to generate microcrystalline powders with high surface areas and optimum activities per unit area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The efficiency of fuel cells and metal-air batteries is significantly limited by the activation of oxygen reduction and evolution reactions. Despite the well-recognized role of oxygen reaction kinetics on the viability of energy technologies, the governing mechanisms remain elusive and until now have been addressable only by macroscopic studies. This lack of nanoscale understanding precludes optimization of material architecture. Here, we report direct measurements of oxygen reduction/evolution reactions and oxygen vacancy diffusion on oxygen-ion conductive solid surfaces with sub-10 nm resolution. In electrochemical strain microscopy, the biased scanning probe microscopy tip acts as a moving, electrocatalytically active probe exploring local electrochemical activity. The probe concentrates an electric field in a nanometre-scale volume of material, and bias-induced, picometre-level surface displacements provide information on local electrochemical processes. Systematic mapping of oxygen activity on bare and platinum-functionalized yttria-stabilized zirconia surfaces is demonstrated. This approach allows direct visualization of the oxygen reduction/evolution reaction activation process at the triple-phase boundary, and can be extended to a broad spectrum of oxygen-conductive and electrocatalytic materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catalysts currently employed for the polymerization of ethylene have previously been found to deactivate in the presence of oxygen. It is, therefore, important that oxygen is removed from the ethylene feedstock prior to the polymerization. The Ag/gamma-Al2O3 catalyst exhibits excellent activity and selectivity toward oxygen reduction with hydrogen in the presence of ethylene. TAP vacuum pulse experiments have been utilised to understand the catalytic behaviour of the Ag/gamma-Al2O3 catalyst. TAP multi-pulse experiments have determined the types of active sites that are found on the Ag/gamma-Al2O3 catalyst, and the intrinsic activity of these sites. The lifetime of the reactive adsorbed oxygen intermediate has also been determined through TAP consecutive pulse experiments. Multi-pulse and consecutive pulse data have been combined with ethylene adsorption/desorption rate constants to provide an overview of the Ag/gamma-Al2O3 catalyst system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The unique feature ofmitochondrial complex I is the so-called A/D transition (active-deactive transition). The A-form catalyses rapid oxidation of NADH by ubiquinone (k ~10 min) and spontaneously converts into the D-form if the enzyme is idle at physiological temperatures. Such deactivation occurs in vitro in the absence of substrates or in vivo during ischaemia, when the ubiquinone pool is reduced. The D-form can undergo reactivation given both NADH and ubiquinone availability during slow (k ~1-10 min) catalytic turnover(s). We examined known conformational differences between the two forms and suggested a mechanism exerting A/D transition of the enzyme. In addition, we discuss the physiological role of maintaining the enzyme in the D-form during the ischaemic period. Accumulation of the D-form of the enzyme would prevent reverse electron transfer from ubiquinol to FMN which could lead to superoxide anion generation. Deactivation would also decrease the initial burst of respiration after oxygen reintroduction. Therefore the A/D transition could be an intrinsic protective mechanism for lessening oxidative damage during the early phase of reoxygenation. Exposure of Cys of mitochondrially encoded subunit ND3 makes the Dform susceptible for modification by reactive oxygen species and nitric oxide metabolites which arrests the reactivation of the D-form and inhibits the enzyme. The nature of thiol modification defines deactivation reversibility, the reactivation timescale, the status of mitochondrial bioenergetics and therefore the degree of recovery of the ischaemic tissues after reoxygenation.