4 resultados para ASG, PCE, Sobol

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The known breast cancer susceptibility polymorphisms in FGFR2, TNRC9/TOX3, MAP3K1, LSP1, and 2q35 confer increased risks of breast cancer for BRCA1 or BRCA2 mutation carriers. We evaluated the associations of 3 additional single nucleotide polymorphisms (SNPs), rs4973768 in SLC4A7/NEK10, rs6504950 in STXBP4/COX11, and rs10941679 at 5p12, and reanalyzed the previous associations using additional carriers in a sample of 12,525 BRCA1 and 7,409 BRCA2 carriers. Additionally, we investigated potential interactions between SNPs and assessed the implications for risk prediction. The minor alleles of rs4973768 and rs10941679 were associated with increased breast cancer risk for BRCA2 carriers (per-allele HR - 1.10, 95% CI: 1.03-1.18, P - 0.006 and HR - 1.09, 95% CI: 1.01-1.19, P = 0.03, respectively). Neither SNP was associated with breast cancer risk for BRCA1 carriers, and rs6504950 was not associated with breast cancer for either BRCA1 or BRCA2 carriers. Of the 9 polymorphisms investigated, 7 were associated with breast cancer for BRCA2 carriers (FGFR2, TOX3, MAP3K1, LSP1, 2q35, SLC4A7, 5p12, P 7 = 10 x (11) - 0.03), but only TOX3 and 2q35 were associated with the risk for BRCA1 carriers (P = 0.0049, 0.03, respectively). All risk-associated polymorphisms appear to interact multiplicatively on breast cancer risk for mutation carriers. Based on the joint genotype distribution of the 7 risk-associated SNPs in BRCA2 mutation carriers, the 5% of BRCA2 carriers at highest risk (i.e., between 95th and 100th percentiles) were predicted to have a probability between 80% and 96% of developing breast cancer by age 80, compared with 42%

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ARTD1 (PARP1) is a key enzyme involved in DNA repair through the synthesis of poly(ADP-ribose) (PAR) in response to strand breaks, and it plays an important role in cell death following excessive DNA damage. ARTD1-induced cell death is associated with NAD(+) depletion and ATP loss; however, the molecular mechanism of ARTD1-mediated energy collapse remains elusive. Using real-time metabolic measurements, we compared the effects of ARTD1 activation and direct NAD(+) depletion. We found that ARTD1-mediated PAR synthesis, but not direct NAD(+) depletion, resulted in a block to glycolysis and ATP loss. We then established a proteomics-based PAR interactome after DNA damage and identified hexokinase 1 (HK1) as a PAR binding protein. HK1 activity is suppressed following nuclear ARTD1 activation and binding by PAR. These findings help explain how prolonged activation of ARTD1 triggers energy collapse and cell death, revealing insight into the importance of nucleus-to-mitochondria communication via ARTD1 activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Controversy over the alpine route that Hannibal of Carthage followed from the Rhône Basin into Italia has raged amongst classicists and ancient historians for over two millennia. The motivation for identifying the route taken by the Punic Army through the Alps lies in its potential for identifying sites of historical archaeological significance and for the resolution of one of history's most enduring quandaries. Here, we present stratigraphic, geochemical and microbiological evidence recovered from an alluvial floodplain mire located below the Col de la Traversette (~3000 m asl-above sea level) on the French/Italian border that potentially identifies the invasion route as the one originally proposed by Sir Gavin de Beer (de Beer 1974). The dated layer is termed the MAD bed (mass animal deposition) based on disrupted bedding, greatly increased organic carbon and key/specialized biological components/compounds, the latter reported in Part II of this paper. We propose that the highly abnormal churned up (bioturbated) bed was contaminated by the passage of Hannibal's animals, possibly thousands, feeding and watering at the site, during the early stage of Hannibal's invasion of Italia (218 bc).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As discussed in Part I, a large accumulation of mammalian faeces at the mire site in the upper Guil Valley near Mt. Viso, dated to 2168cal 14C yr., provides the first evidence of the passage of substantial but indeterminate numbers of mammals within the time frame of the Punic invasion of Italia. Specialized organic biomarkers bound up in a highly convoluted and bioturbated bed constitute an unusual anomaly in a histosol comprised of fibric and hemist horizons that are usually expected to display horizontal bedding. The presence of deoxycholic acid and ethylcoprostanol derived from faecal matter, coupled with high relative numbers of Clostridia 16S rRNA genes, suggests a substantial accumulation of mammalian faeces at the site over 2000years ago. The results reported here constitute the first chemical and biological evidence of the passage of large numbers of mammals, possibly indicating the route of the Hannibalic army at this time. Combined with the geological analysis reported in Part I, these data provide a background supporting the need for further historical archaeological exploration in this area.