111 resultados para AR coatings
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
We have measured the densities of 1s5 and 1s3 argon metastables as a function of the abundance of molecular oxygen in an inductively coupled plasma (ICP) in mixtures of Ar and O2. Laser absorption spectroscopy was used to determine the densities of the metastables. It was found that even small abundances of oxygen lead to large increases in metastable density, mostly due to the reduction in the electron number density, since electron-induced quenching determines the metastable density. At abundances higher than 7% to 15% for powers between 50 and 150W, quenching by oxygen molecules begins to dominate and the metastable density drops again.
Resumo:
It is accepted that ventilator-associated pneumonia is a frequent cause of morbidity and mortality in intensive care patients. This study describes the physicochemical properties of novel surfactant coatings of the endotracheal tube and the resistance to microbial adherence of surfactant coated endotracheal tube polyvinylchloride (PVC). Organic solutions of surfactants containing a range of ratios of cholesterol and lecithin (0:100, 25:75, 50:50, 75:25, dissolved in dichloromethane) were prepared and coated onto endotracheal tube PVC using a multiple dip-coating process. Using modulated temperature differential scanning calorimetry it was confirmed that the binary surfactant systems existed as physical mixtures. The surface properties of both surfactant-coated and uncoated PVC, following treatment with either pooled human saliva or phosphate-buffered saline (PBS), were characterised using dynamic contact angle analysis. Following treatment with saliva, the contact angles of PVC decreased; however, those of the coated biomaterials were unaffected, indicating different rates and extents of macromolecular adsorption from saliva onto the coated and uncoated PVC. The advancing and receding contact angles of the surfactant-coated PVC were unaffected by sonication, thereby providing evidence of the durability of the coatings. The cell surface hydrophobicity and zeta potentials of isolates of Staphylococcus aureus and Pseudomonas aeruginosa, following treatment with either saliva or PBS, and their adherence to uncoated and surfactant-coated PVC (that had been pre-treated with saliva) were examined. Adherence of S. aureus and Ps. aeruginosa to surfactant-coated PVC at each successive time period (0.5, 1, 2, 4, 8 h) was significantly lower than to uncoated PVC, the extent of the reduction frequently exceeding 90%. Interestingly, the microbial anti-adherent properties of the coatings were dependent on the lecithin content. Based on the impressive microbial anti-adherence properties and durability of the surfactant coating on PVC following dip coatings, it is proposed that these systems may usefully reduce the incidence of ventilator-associated pneumonia when employed as luminal coatings of the endotracheal tube.
Resumo:
A full-electron coupled-state treatment of positronium (Ps)- inert gas scattering is developed within the context of the frozen target approximation. Calculations are performed for Ps(Is) scattering by Ne and Ar in the impact energy range 0-40 eV using coupled pseudostate expansions consisting of nine and 22 Ps states. The purpose of the pseudostates is primarily to represent ionization of the Ps which is found to be a major process at the higher energies. First Born estimates of target excitation are used to complement the frozen target results. The available experimental data are discussed in detail. It is pointed out that the very low energy measurements (less than or equal to2 eV) correspond to the momentum transfer cross section sigma(mom) and not to the elastic cross section sigma(el). Calculation shows that sigma(mom), and sigma(el) diverge very rapidly with increasing energy and consequently comparisons of the low-energy data with ITel can be very misleading. Agreement between the calculations and the low-energy measurements of anion as well;as higher energy (greater than or equal to15 eV) beam measurements of the total cross section, is less than satisfactory. Results for Ps(1s) scattering by Kr and Xe in the static-exchange approximation are also presented.
Resumo:
Distorted-wave Born approximation calculations for Ps formation in positron impact on He, Ne, Ar, Kr and Xe are reported for the energy range up to 200 eV. Capture into the n = 1, 2 and 3 states of Ps is calculated explicitly and 1/n(3) scaling is used to estimate capture into states with n > 3. The calculations for the heavier noble gases allow for capture not only from the outer np(6) shell of the atom but also from the first inner ns(2) shell. However, the inner shell capture is found to be very small. Although by no means unambiguous, the calculations provide some support to the conjecture of Larrichia et al. [J. Phys. B 35 (2002) 2525] that the double peak and shoulder structures observed experimentally for Ps formation in Ar, Kr and Xe arise from formation in excited states. (C) 2004 Elsevier B.V. All rights reserved.