52 resultados para AQUEOUS SOLUTIONS

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental measurements of density at different temperatures ranging from 293.15 to 313.15 K, the speed of sound and osmotic coefficients at 298.15 K for aqueous solution of 1-ethyl-3-methylimidazolium bromide ([Emim][Br]), and osmotic coefficients at 298.15 K for aqueous solutions of 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]) in the dilute concentration region are taken. The data are used to obtain compressibilities, expansivity, apparent and limiting molar properties, internal pressure, activity, and activity coefficients for [Emim][Br] in aqueous solutions. Experimental activity coefficient data are compared with that obtained from Debye-Hückel and Pitzer models. The activity data are further used to obtain the hydration number and the osmotic second virial coefficients of ionic liquids. Partial molar entropies of [Bmim][Cl] are also obtained using the free-energy and enthalpy data. The distance of the closest approach of ions is estimated using the activity data for ILs in aqueous solutions and is compared with that of X-ray data analysis in the solid phase. The measured data show that the concentration dependence for aqueous solutions of [Emim][Br] can be accounted for in terms of the hydrophobic hydration of ions and that this IL exhibits Coulombic interactions as well as hydrophobic hydration for both the cations and anions. The small hydration numbers for the studied ILs indicate that the low charge density of cations and their hydrophobic nature is responsible for the formation of the water-structure-enforced ion pairs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The experimental measurements of the speed of sound and density of aqueous solutions of imidazolium based ionic liquids (IL) in the concentration range of 0.05 mol · kg-1 to 0.5 mol · kg-1 at T = 298.15 K are reported. The data are used to obtain the isentropic compressibility (ßS) of solutions. The apparent molar volume (phiV) and compressibility (phiKS) of ILs are evaluated at different concentrations. The data of limiting partial molar volume and compressibility of IL and their concentration variation are examined to evaluate the effect due to IL–water and IL–IL interactions. The results have been discussed in terms of hydrophobic hydration, hydrophobic interactions, and water structural changes in aqueous medium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The volumetric properties of seven {water + ionic liquid} binary mixtures have been studied as a function of temperature from (293 to 343) K. The phase behaviour of the systems was first investigated using a nephelometric method and excess molar volumes were calculated from densities measured using an Anton Paar densimeter and fitted using a Redlich-Kister type equation. Two ionic liquids fully miscible with water (1-butyl-3-methylimidazolium tetrafluoroborate ([CCIm][BF]) and 1-ethyl-3-methylimidazolium ethylsulfate ([CCIm][EtSO])) and five ionic liquids only partially miscible with water (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([CCIm][NTf]), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([CCIm][NTf]), 1-butyl-3-methylimidazolium hexafluorophosphate ([CCIm][PF]), 1-butyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([CCPyrro][NTf]), and butyltrimethylammonium bis(trifluoromethylsulfonyl)imide ([N][NTf])) were chosen. Small excess volumes (less than 0.5 cm · mol at 298 K) are obtained compared with the molar volumes of the pure components (less than 0.3% of the molar volume of the pure ionic liquid). For all the considered systems, except for {[CCIm][EtSO] + water}, positive excess molar volumes were calculated. Finally, an increase of the non-ideality character is observed for all the systems as temperature increases. © 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solvent extraction of cesium ions from aqueous solution to hydrophobic ionic liquids without the introduction of an organophilic anion in the aqueous phase was demonstrated using calix[4]arene-bis(tert-octylbenzo-crown-6) (BOBCalixC6) as an extractant. The selectivity of this extraction process toward cesium ions and the use of a sacrificial cation exchanger (NaBPh4) to control loss of imidazolium cation to the aqueous solutions by ion exchange have been investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ionic conductivities of twelve protic ionic liquids (PILs) and their mixtures with water over the whole composition range are reported at 298.15 K and atmospheric pressure. The selected PILs are the pyrrolidinium-based PILs containing nitrate, acetate or formate anions; the formate-based PILs containing diisopropylethylammonium, amilaminium, quinolinium, lutidinium or collidinium cations; and the pyrrolidinium alkylcarboxylates, [Pyrr][CnH2n+1COO] with n = 5–8. This study was performed in order to investigate the influence of molecular structures of the ions on the ionic conductivities in aqueous solutions. The ionic conductivities of the aqueous solutions are 2–30 times higher than the conductivities of pure PILs. The maximum in conductivity varies from ww=0.41???to???0.74 and is related to the nature of cations and anions. The molar conductance and the molar conductance at infinite dilution for (PIL + water) solutions are then determined. Self-diffusion coefficients of the twelve protic ionic liquids in water at infinite dilution and at 298.15 K are calculated by using the Nernst–Haskell, the original and the modified Wilke–Chang equations. These calculations show that similar values are obtained using the modified Wilke–Chang and the Nernst–Haskell equations. Finally, the effective hydrodynamic (or Stokes) radius of the PILs was determined by using the Stokes–Einstein equation. A linear relationship was established in order to predict this radius as a function of the anion alkyl chain length in the case of the pyrrolidinium alkylcarboxylates PILs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose
– The purpose of this paper is to investigate the performance of natural Jordanian zeolite tuff to remove ammonia from aqueous solutions using a laboratory batch method and fixed-bed column apparatus. Equilibrium data were fitted to Langmuir and Freundlich models.

Design/methodology/approach
– Column experiments were conducted in packed bed column. The used apparatus consisted of a bench-mounted glass column of 2.5 cm inside diameter and 100 cm height (column volume = 490 cm3). The column was packed with a certain amount of zeolite to give the desired bed height. The feeding solution was supplied from a 30 liter plastic container at the beginning of each experiment and fed to the column down-flow through a glass flow meter having a working range of 10-280ml/min.

Findings
– Ammonium ion exchange by natural Jordanian zeolite data were fitted by Langmuir and Freundlich isotherms. Continuous sorption of ammonium ions by natural Jordanian zeolite tuff has proven to be effective in decreasing concentrations ranging from 15-50 mg NH4-N/L down to levels below 1 mg/l. Breakthrough time increased by increasing the bed depth as well as decreasing zeolite particle size, solution flow-rate, initial NH4+ concentration and pH. Sorption of ammonium by the zeolite under the tested conditions gave the sorption capacity of 28 mg NH4-N/L at 20°C, and 32 mg NH4-N/L at 30°C.

Originality/value
– This research investigates the performance of natural Jordanian zeolite tuff to remove ammonia from aqueous solutions using a laboratory batch method and fixed-bed column apparatus. The equilibrium data of the sorption of Ammonia were plotted by using the Langmuir and Freundlich isotherms, then the experimental data were compared to the predictions of the above equilibrium isotherm models. It is clear that the NH4+ ion exchange data fitted better with Langmuir isotherm than with Freundlich model and gave an adequate correlation coefficient value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With most recent studies being focused on the development of
advanced chemical adsorbents, this paper investigates the possibility of
using two natural low-cost materials for selective adsorption. Multiadsorbent
systems containing tea waste and dolomite have been tested for
their effectiveness in the removal of copper and methylene blue from
aqueous solutions. The effects of contact time, solution pH and
adsorption isotherms on the sorption behaviour were investigated. The
Langmuir and Freundlich isotherms adequately described the adsorption of
copper ions and methylene blue by both materials in different systems.
The highest adsorption capacities for Cu and MB were calculated as 237.7
at pH 4.5 and 150.44 mg.g‒1 at pH 7 for DO and TW+DO respectively. Tea
waste (TW) and dolomite (DO) were characterized by Fourier transform
infrared spectroscopy, scanning electron microscopy and Energy dispersive
X-ray analysis. The removal of Cu and MB by dolomite was mainly via
surface complexation while physisorption was responsible for most of the
Cu and MB adsorption onto tea waste. Identifying the fundamental mechanisms and behaviour is key to the development of practical multi-adsorbent packed columns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrous cerium oxide (HCO) was synthesized by intercalation of solutions of cerium(III) nitrate and sodium hydroxide and evaluated as an adsorbent for the removal of hexavalent chromium from aqueous solutions. Simple batch experiments and a 25 factorial experimental design were employed to screen the variables affecting Cr(VI) removal efficiency. The effects of the process variables; solution pH, initial Cr(VI) concentration, temperature, adsorbent dose and ionic strength were examined. Using the experimental results, a linear mathematical model representing the influence of the different variables and their interactions was obtained. Analysis of variance (ANOVA) demonstrated that Cr(VI) adsorption significantly increases with decreased solution pH, initial concentration and amount of adsorbent used (dose), but slightly decreased with an increase in temperature and ionic strength. The optimization study indicates 99% as the maximum removal at pH 2, 20 °C, 1.923 mM of metal concentration and a sorbent dose of 4 g/dm3. At these optimal conditions, Langmuir, Freundlich and Redlich–Peterson isotherm models were obtained. The maximum adsorption capacity of Cr(VI) adsorbed by HCO was 0.828 mmol/g, calculated by the Langmuir isotherm model. Desorption of chromium indicated that the HCO adsorbent can be regenerated using NaOH solution 0.1 M (up to 85%). The adsorption interactions between the surface sites of HCO and the Cr(VI) ions were found to be a combined effect of both anion exchange and surface complexation with the formation of an inner-sphere complex.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The liquid structures of thin films of aqueous solutions of 0, 7, 19, 50, and 100 mol % isopropanol above O/Al-terminated gamma-alumina surfaces have been investigated by means of classical molecular dynamics simulations. The structuring effect of the oxide oil the liquid mixtures is strong and heavily dependent on the local structure of the oxide. Two distinct re-ions are found oil the oxide Surface characterized by the degree of coordination of Al atoms. Above octahedral Al atoms, water and isopropanol molecules adsorb via the oxygen atoms to maximize the electrostatic interaction, whereas above tetrahedral Al sites the solvent molecules adsorb via hydrogen atoms with the oxygen atoms away front the surface. More mobility is found in the second layer compared with the first; however, its structure is still influenced significantly by the orientation of molecules in the first adsorbed layer. Qualitatively, the displacement of water from the surface by the adsorption of isopropanol occurs with 2.6 Water molecules lost for every alcohol molecule present based on the effective surface areas of the two species calculated from the pure simulations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Na-doped Birnessite-type manganese oxide (d-MnO) has been synthesized using the chemical method and characterized through X-ray diffraction and SEM, showing the lamellar structure and high crystal structure. A comparative study of the electrochemical performances of this material with those of the commercial Cryptomelane-type MnO has then been undertaken in ten neutral aqueous electrolytes for supercapacitor applications. Aqueous electrolytes, containing a lithium salt, LiX (where X = SO , NO, CHCO , CHSO, ClO , CHCO, TFSI, Beti, BOB, or Lact), have been first prepared under neutral pH conditions to reach the salt concentration, providing the maximum in conductivity. Their transport properties are then investigated through conductivities, viscosities, and self-diffusion coefficient measurements. Second, the thermal behaviors of these electrolytic aqueous solutions are then evaluated by using a differential scanning calorimeter from (213.15 to 473.15) K in order to access their liquid range temperatures. Cyclic voltammograms (CV) in three electrode configurations are thereafter investigated using Na Birnessite and Cryptomelane as working electrode material from (-0.05 to 1.5) V versus Ag/AgCl at various sweep rates from (2 to 100) mV·s. According to anion nature/structure and manganese oxide material type, different CV responses are observed, presenting a pure capacitive profile for Beti or CH CO and an additional pseudocapacitive signal for the smallest anions, such as ClO and NO . The capacitances, energies, and efficiencies are finally calculated. These results indicate clearly that electrolytes based on a mineral lithium salt under neutral pH condition and high salt concentration (up to 5 mol·L) have better electrochemical performances than organic ones, up to 1.4 V with good material stability and capacity retention. The relationship between transport properties, electrostatic and steric hindrance considerations of hydrated ions, and their electrochemical performances is discussed in order to understand further the lithium intercalation-deintercalation processes in the lamellar or tunnel structure of investigated MnO. © 2013 American Chemical Society.