149 resultados para ANION-EXCHANGE
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
A novel method to fractionate phage into its subtypes while fully retaining biological function is reported. Corynebacterium pekinense AS 1.299 phage samples, purified by either conventional ultracentrifugation or gel chromatography on a Superose® 6 Prep column (0.78×30 cm), were fractionated further into four fractions by anion-exchange chromatography on a Toyopearl SuperQ 650C column (0.5×20 cm) with a linear gradient of NaCl concentration from 0.2 to 1.0 M in 0.02 M carbonate–biocarbonate buffer, pH 10.0. Two peaks were identified to be C. pekinense AS 1.299 phages by their ability to infect the host bacteria when inoculated into the culture media, and when examined by electron microscopy. These two types of the phage were found to be morphologically the same except for the difference in the length of their non-contractile tails. Both possessed an isometric head with a diameter of 50±3 nm, while their tails were 170±10 and 210±10 nm, respectively. This simple technique provides a convenient method for phage isolation not only to its species homogeneity, but also to determine its subtype or variant homogeneity.
Resumo:
A new, wide ranging, synthetically powerful, catalytic tandem cyclisation-anion capture process is proposed which depends on the rate of cyclisation of an organopalladium specifies (RPdX) onto a proximate alkene or diene being significantly faster than anion exchange and reductive elimination in the sequence RPdX --> RPdY --> RY + Pd(0). The catalytic cyclisation - anion capture sequence is illustrated for hydride capture by a wide variety of substrates giving rise to fused- and spiro-, carbo- and hetero-cyclic systems, regio- and stereo-specifically.
Resumo:
Synthetic resins are shown to be effective in removing uranium from contaminated groundwater. Batch and field column tests showed that strong-base anion-exchange resins were more effective in removing uranium from both near-neutral-pH (6.5)- and high-pH (8)-low-nitrate-containing groundwaters, than metal-chelating resins, which removed more uranium from acidic-pH (5)-high-nitrate-containing groundwater from the Oak Ridge Reservation (ORR) Y-12 S-3 Ponds area in Tennessee, USA. Dowex 1-X8 and Purolite A-520E anion-exchange resins removed more uranium from high-pH (8)-low-nitrate-containing synthetic groundwater in batch tests than metal-chelating resins. The Dowex™ 21K anion-exchange resin achieved a cumulative loading capacity of 49.8 mg g-1 before breakthrough in a field column test using near-neutral-pH (6.5)-low-nitrate-containing groundwater. However, in an acidic-pH (5)-high-nitrate-containing groundwater, metal-chelating resins Diphonix and Chelex-100 removed more uranium than anion-exchange resins. In 15 mL of acidic-pH (5)-high-nitrate-containing groundwater spiked with 20 mg L-1 uranium, the uranium concentrations ranged from 0.95 mg L-1 at 1-h equilibrium to 0.08 mg L-1 at 24-h equilibrium for Diphonix and 0.17 mg L-1 at 1-h equilibrium to 0.03 mg L-1 at 24-h equilibrium for Chelex-100. Chelex-100 removed more uranium in the first 10 min in the 100 mL of acidic-(pH 5)-high-nitrate-containing groundwater (~5 mg L-1 uranium); however, after 10 min, Diphonix equaled or out-performed Chelex-100. This study presents an improved understanding of the selectivity and sorption kenetics of a range of ion-exchange resins that remove uranium from both low- and high-nitrate-containing groundwaters with varying pHs..
Resumo:
Lecithin:cholesterol acyltransferase (LCAT) is a key enzyme involved in lipoprotein metabolism. It mediates the transesterification of free cholesterol to cholesteryl ester in an apoprotein A-I-dependent process. We have isolated purified LCAT from human plasma using anion-exchange chromatography and characterized the extracted LCAT in terms of its molecular weight, molar absorption coefficient, and enzymatic activity. The participation of LCAT in the oxidation of very low density lipoproteins (VLDL) and low-density lipoproteins (LDL) was examined by supplementing lipoproteins with exogenous LCAT over a range of protein concentrations. LCAT-depleted lipoproteins were also prepared and their oxidation kinetics examined. Our results provide evidence for a dual role for LCAT in lipoprotein oxidation, whereby it acts in a dose-responsive manner as a potent pro-oxidant during VLDL oxidation, but as an antioxidant during LDL oxidation. We believe this novel pro-oxidant effect may be attributable to the LCAT-mediated formation of oxidized cholesteryl ester in VLDL, whereas the antioxidant effect is similar to that of chain-breaking antioxidants. Thus, we have demonstrated that the high-density lipoprotein-associated enzyme LCAT may have a significant role to play in lipoprotein modification and hence atherogenesis. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Recombinant wild-type beta(1) gamma(1) dimers of signal-transducing guanine nucleotide-binding proteins (G proteins) and beta(1) gamma 1 dimers carrying a mutation known to block gamma-subunit isoprenylation (beta(1) gamma(1)C71S) were expressed in baculovirus-infected insect cells. Both wild-type and mutant beta(1) gamma(1) dimers were found in soluble fractions of infected cells upon subcellular fractionation. Anion exchange chromatographic and metabolic-radiolabeling studies revealed that the soluble beta(1) gamma(1) preparation contained approximately equal amounts of non-isoprenylated and isoprenylated beta(1) gamma(1) dimers. Soluble wild-type and mutant beta(1) gamma(1) dimers and native beta(1) gamma(1) dimers purified from bovine retina were reconstituted with recombinant phospholipase C-beta(2). Only isoprenylated beta(1) gamma(1) dimers were capable of stimulating phospholipase C-beta(2). The results show that gamma-subunit isoprenylation and/or additional post-translational processing of the protein are required for beta gamma subunit stimulation of phospholipase C.
Resumo:
The steps involved in the biosynthesis of the ADP-L-glycero-beta-D-manno-heptose (ADP-L-beta-D-heptose) precursor of the inner core lipopolysaccharide (LPS) have not been completely elucidated. In this work, we have purified the enzymes involved in catalyzing the intermediate steps leading to the synthesis of ADP-D-beta-D-heptose and have biochemically characterized the reaction products by high-performance anion-exchange chromatography. We have also constructed a deletion in a novel gene, gmhB (formerly yaeD), which results in the formation of an altered LPS core. This mutation confirms that the GmhB protein is required for the formation of ADP-D-beta-D-heptose. Our results demonstrate that the synthesis of ADP-D-beta-D-heptose in Escherichia coli requires three proteins, GmhA (sedoheptulose 7-phosphate isomerase), HldE (bifunctional D-beta-D-heptose 7-phosphate kinase/D-beta-D-heptose 1-phosphate adenylyltransferase), and GmhB (D,D-heptose 1,7-bisphosphate phosphatase), as well as ATP and the ketose phosphate precursor sedoheptulose 7-phosphate. A previously characterized epimerase, formerly named WaaD (RfaD) and now renamed HldD, completes the pathway to form the ADP-L-beta-D-heptose precursor utilized in the assembly of inner core LPS.
Resumo:
Two approaches were undertaken to characterize the arsenic (As) content of Chinese rice. First, a national market basket survey (n = 240) was conducted in provincial capitals, sourcing grain from China's premier rice production areas. Second, to reflect rural diets, paddy rice (n = 195) directly from farmers fields were collected from three regions in Hunan, a key rice producing province located in southern China. Two of the sites were within mining and smeltery districts, and the third was devoid of large-scale metal processing industries. Arsenic levels were determined in all the samples while a subset (n = 33) were characterized for As species, using a new simple and rapid extraction method suitable for use with Hamilton PRP-X100 anion exchange columns and HPLC-ICP-MS. The vast majority (85%) of the market rice grains possessed total As levels <150 ng g(-1). The rice collected from mine-impacted regions, however, were found to be highly enriched in As, reaching concentrations of up to 624 ng g(-1). Inorganic As (As(i)) was the predominant species detected in all of the speciated grain, with As(i) levels in some samples exceeding 300 ng g(-1). The As(i) concentration in polished and unpolished Chinese rice was successfully predicted from total As levels. The mean baseline concentrations for As(i) in Chinese market rice based on this survey were estimated to be 96 ng g(-1) while levels in mine-impacted areas were higher with ca. 50% of the rice in one region predicted to fail the national standard.
Resumo:
Synchrotron-based X-ray fluorescence (S-XRF) was utilized to locate arsenic (As) in polished (white) and unpolished (brown) rice grains from the United States, China, and Bangladesh. In white rice As was generally dispersed throughout the grain, the bulk of which constitutes the endosperm. In brown rice As was found to be preferentially localized at the surface, in the region corresponding to the pericarp and aleurone layer. Copper, iron, manganese, and zinc localization followed that of arsenic in brown rice, while the location for cadmium and nickel was distinctly different, showing relatively even distribution throughout the endosperm. The localization of As in the outer grain of brown rice was confirmed by laser ablation ICP-MS. Arsenic speciation of all grains using spatially resolved X-ray absorption near edge structure (micro-XANES) and bulk extraction followed by anion exchange HPLC-ICP-MS revealed the presence of mainly inorganic As and dimethylarsinic acid (DMA). However, the two techniques indicated different proportions of inorganic:organic As species. A wider survey of whole grain speciation of white (n=39) and brown (n=45) rice samples from numerous sources (field collected, supermarket survey, and pot trials) showed that brown rice had a higher proportion of inorganic arsenic present than white rice. Furthermore, the percentage of DMA present in the grain increased along with total grain arsenic.
Resumo:
Arsenic speciation was determined in Lumbricus rubellus Hoffmeister from arsenic-contaminated mine spoil sites and an uncontaminated site using HPLC-MS, HPLC-ICP-MS and XAS. It was previously demonstrated that L. rubellus from mine soils were more arsenate resistant than from the uncontaminated site and we wished to investigate if arsenic speciation had a role in this resistance. Earthworms from contaminated sites had considerably higher arsenic body burdens (maximum 1,358 mg As kg-1) compared to the uncontaminated site (maximum 13 mg As kg-1). The only organo-arsenic species found in methanol/water extracts for all earthworm populations was arsenobetaine, quantified using both HPLC-MS and HPLC-ICP-MS. Arsenobetaine concentrations were high in L. rubellus from the uncontaminated site when concentrations were expressed as a percentage of the total arsenic burden (23% mean), but earthworms from the contaminated sites with relatively low arsenic burdens also had these high levels of arsenobetaine (17% mean). As arsenic body burden increased, the percentage of arsenobetaine present decreased in a dose dependent manner, although its absolute concentration rose with increasing arsenic burden. The origin of this arsenobetaine is discussed. XAS analysis of arsenic mine L. rubellus showed that arsenic was primarily present as As(III) co-ordinated with sulfur (30% approx.), with some As(v) with oxygen (5%). Spectra for As(III) complexed with glutathione gave a very good fit to the spectra obtained for the earthworms, suggesting a role for sulfur co-ordination in arsenic metabolism at higher earthworm arsenic burdens. It is also possible that the disintegration of As(III)-S complexes may have taken place due to (a) processing of the sample, (b) storage of the extract or (c) HPLC anion exchange. HPLC-ICP-MS analysis of methanol extracts showed the presence of arsenite and arsenate, suggesting that these sulfur complexes disintegrate on extraction. The role of arsenic speciation in the resistance of L. rubellus to arsenate is considered.
Resumo:
Acutohaemolysin, a phospholipase A2 (PLA2) from the venom of the snake Agkistrodon acutus, has been isolated and purified to homogeneity by anion-exchange chromatography on a DEAE-Sepharose column followed by cation-exchange chromatography on a CM-Sepharose column. It is an alkaline protein with an isoelectric point of 10.5 and is comprised of a single polypeptide chain of 13 938 Da. Its N-terminal amino-acid sequence shows very high similarity to Lys49-type PLA2 proteins from other snake venoms. Although its PLA2 enzymatic activity is very low, acutohaemolysin has a strong indirect haemolytic activity and anticoagulant activity. Acutohaemolysin crystals with a diffraction limit of 1.60 Å were obtained by the hanging-drop vapour-diffusion method. The crystals belong to the space group C2, with unit-cell parameters a = 45.30, b = 59.55, c = 46.13 Å, [beta] = 117.69°. The asymmetric unit contains one molecule
Resumo:
Hydrous cerium oxide (HCO) was synthesized by intercalation of solutions of cerium(III) nitrate and sodium hydroxide and evaluated as an adsorbent for the removal of hexavalent chromium from aqueous solutions. Simple batch experiments and a 25 factorial experimental design were employed to screen the variables affecting Cr(VI) removal efficiency. The effects of the process variables; solution pH, initial Cr(VI) concentration, temperature, adsorbent dose and ionic strength were examined. Using the experimental results, a linear mathematical model representing the influence of the different variables and their interactions was obtained. Analysis of variance (ANOVA) demonstrated that Cr(VI) adsorption significantly increases with decreased solution pH, initial concentration and amount of adsorbent used (dose), but slightly decreased with an increase in temperature and ionic strength. The optimization study indicates 99% as the maximum removal at pH 2, 20 °C, 1.923 mM of metal concentration and a sorbent dose of 4 g/dm3. At these optimal conditions, Langmuir, Freundlich and Redlich–Peterson isotherm models were obtained. The maximum adsorption capacity of Cr(VI) adsorbed by HCO was 0.828 mmol/g, calculated by the Langmuir isotherm model. Desorption of chromium indicated that the HCO adsorbent can be regenerated using NaOH solution 0.1 M (up to 85%). The adsorption interactions between the surface sites of HCO and the Cr(VI) ions were found to be a combined effect of both anion exchange and surface complexation with the formation of an inner-sphere complex.
Resumo:
The peroxometalate-based polymer immobilized ionic liquid phase catalyst [PO4{WO(O-2)(2)}(4)]@PIILP has been prepared by anion exchange of ring opening metathesis-derived pyrrolidinium-decorated norbornene/ cyclooctene copolymer and shown to be a remarkably efficient system for the selective oxidation of sulfides under mild conditions. A cartridge packed with a mixture of [PO4{WO(O-2)(2)}(4)]@PIILP and silica operated as a segmented or continuous flow process and gave good conversions and high selectivity for either sulfoxide (92% in methanol at 96% conversion for a residence time of 4 min) or sulfone (96% in acetonitrile at 96% conversion for a residence time of 15 min). The immobilized catalyst remained active for 8 h under continuous flow operation with a stable activity/selectivity profile that allowed 6.5 g of reactant to be processed (TON = 46 428) while a single catalyst cartridge could be used for the consecutive oxidation of multiple substrates giving activity-selectivity profiles that matched those obtained with fresh catalyst.
Resumo:
Sheep on the island of North Ronaldsay (Orkney, UK) feed mostly on seaweed, which contains high concentrations of dimethylated arsenoribosides. Wool of these sheep contains dimethylated, monomethylated and inorganic arsenic, in addition to unidentified arsenic species in unbound and complexed form. Chromatographic techniques using different separation mechanisms and detectors enabled us to identify five arsenic species in water extracts of wool. The wool contained 5.2 ± 2.3 μg arsenic per gram wool. About 80% of the arsenic in wool was extracted by boiling the wool with water. The main species is dimethylarsenic, which accounted for about 75 to 85%, monomethylated arsenic at about 5% and the rest is inorganic arsenic. Depending on the separation method and condition, the chromatographic recovery of arsenic species was between 45% for the anion exchange column, 68% for the size exclusion chromatography (SEC) and 82% for the cation exchange column. The SEC revealed the occurrence of two unknown arsenic compounds, of which one was probably a high molecular mass species. Since chromatographic recovery can be improved by either treating the extract with CuCl/HCl (CAT: 90%) or longer storage of the sample (CAT: 105%), in particular for methylated arsenic species, it can be assumed that labile arsenic -protein-like coordination species occur in the extract, which cannot be speciated with conventional chromatographic methods. It is clear from our study of sheep wool that there can be different kinds of 'hidden' arsenic in biological matrices, depending on the extraction, separation and detection methods used. Hidden species can be defined as species that are not recordable by the detection system, not extractable or do not elute from chromatographic columns. Copyright © 2003 John Wiley & Sons, Ltd.