22 resultados para AC motors
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Current high temperature superconducting (HTS) wires exhibit high current densities enabling their use in electrical rotating machinery. The possibility of designing high power density superconducting motors operating at reasonable temperatures allows for new applications in mobile systems in which size and weight represent key design parameters. Thus, all-electric aircrafts represent a promising application for HTS motors. The design of such a complex system as an aircraft consists of a multi-variable optimization that requires computer models and advanced design procedures. This paper presents a specific sizing model of superconducting propulsion motors to be used in aircraft design. The model also takes into account the cooling system. The requirements for this application are presented in terms of power and dynamics as well as a load profile corresponding to a typical mission. We discuss the design implications of using a superconducting motor on an aircraft as well as the integration of the electrical propulsion in the aircraft, and the scaling laws derived from physics-based modeling of HTS motors.
Resumo:
This paper presents a novel detection method for broken rotor bar fault (BRB) in induction motors based on Estimation of Signal Parameters via Rotational Invariance Technique (ESPRIT) and Simulated Annealing Algorithm (SAA). The performance of ESPRIT is tested with simulated stator current signal of an induction motor with BRB. It shows that even with a short-time measurement data, the technique is capable of correctly identifying the frequencies of the BRB characteristic components but with a low accuracy on the amplitudes and initial phases of those components. SAA is then used to determine their amplitudes and initial phases and shows satisfactory results. Finally, experiments on a 3kW, 380V, 50Hz induction motor are conducted to demonstrate the effectiveness of the ESPRIT-SAA-based method in detecting BRB with short-time measurement data. It proves that the proposed method is a promising choice for BRB detection in induction motors operating with small slip and fluctuant load.
Resumo:
The dielectric properties of Au/[93%Pb(Mg1/3Nb2/3)O-3-7%PbTiO3] (PMN-PT)/(La0.5Sr0.5)CoO3/MgO thin-film capacitor heterostructures, made using pulsed laser deposition, have been investigated, with particular emphasis on the changes in response associated with increasing the magnitude of the ac measuring field. It was found that increasing the ac field caused a change in the frequency spectrum of relaxators, increasing the speed of response of "slow" relaxators, with an associated decrease in the freezing temperature (T-f) of the relaxor system; in addition, other characteristic parameters relating to polar relaxation (activation energy E-a and attempt frequency 1/tau(0)), described by fitting of the dielectric response to a Vogel-Fulcher expression, were found to change continuously as ac field levels were increased.
Resumo:
We present time-resolved spectroscopy and photometry of the double-lined eclipsing cataclysmic variables AC Cnc and V363 Aur (=Lanning 10). There is evidence of irradiation on the inner hemisphere of the secondary star in both systems, which we correct for using a model that reproduces the observations remarkably well. We find the radial velocity of the secondary star in AC Cnc to be K-R=176+/-3 km s(-1) and its rotational velocity to be v sin i=135+/-3 km s(-1). From these parameters we obtain masses of M-1=0.76+/-0.03 M-circle dot for the white-dwarf primary and M-2=0.77+/-0.05 M-circle dot for the K2+/-1 V secondary star, giving a mass ratio of q=1.02+/-0.04. We measure the radial and rotational velocities of the G7+/-2V secondary star in V363 Aur to be K-R=168+/-5 km s(-1) and v sin i=143+/-5 km s(-1), respectively. The component masses of V363 Aur are M-1=0.90+/-0.06M(circle dot) and M-2=1.06+/-0.11 M-circle dot giving a mass ratio of q=1.17+/-0.07. The mass ratios for AC Cnc and V363 Aur fall within the theoretical limits for dynamically and thermally stable mass transfer. Both systems are similar to the SW Sex stars, exhibiting single-peaked emission lines with transient absorption features, high-velocity S-wave components and phase-offsets in their radial-velocity curves. The Balmer lines in V363 Aur show a rapid increase in flux around phase 0 followed by a rapid decrease, which we attribute to the eclipse of an optically thick region at the centre of the disc. This model could also account for the behaviour of other SW Sex stars where the Balmer lines show only a shallow eclipse compared to the continuum.
Resumo:
Protease inhibitors are found in many venoms and evidence suggests that they occur widely in amphibian skin secretions. Kunitz inhibitors have been found in the skin secretions of bombinid toads and ranid frogs, Kazal inhibitors in phyllomedusine frogs and Bowman–Birk inhibitors in ranid frogs. Selective protease inhibitors could have important applications as therapeutics in the treatment of diseases in which discrete proteases play an aetiologcal role. Here we have examined the skin secretion of the edible frog, Rana esculenta, for protease inhibitors using trypsin as a model. HPLC fractions of secretions were screened for inhibitory activity using a chromogenic substrate as reporter. Three major peptides were resolved with trypsin inhibitory activity in HPLC fractions — one was a Kunitz-type inhibitor, a second was a Bowman–Birk inhibitor but the third represented a novel class of trypsin inhibitor in European frog skin. Analysis of the peptide established the structure of a 17-mer with an N-terminal Ala (A) residue and a C-terminal Cys (C) residue with a single disulphide bridge between Cys 12 and 17. Peptide AC-17 resembled a typical “Rana box” antimicrobial peptide but while it was active against Escherichia coli (MIC 30 µM) it was devoid of activity against Staphylococcus aureus and of haemolytic activity. In contrast, the peptide was a potent inhibitor of trypsin with a Ki of 5.56 µM. AC-17 represents the prototype of a novel trypsin inhibitor from the skin secretion of a European ranid frog that may target a trypsin-like protease present on the surface of Gram-negative bacteria.
Resumo:
This paper proposes new direct power control (DPC) strategies for three-phase DC/AC converters with improved dynamic response and steady-state performance. As with an electrical machine, source and converter flux which equal the integration of the respective source and converter voltage are used to define active and reactive power flow. Optimization of the look-up-table used in conventional DPC is outlined first, to improve the power control and reduce the current distortion. Then constant switching frequency DPC is developed where the required converter voltage vector within a fixed half switching period is calculated directly from the active and reactive power errors. Detailed angle compensation due to the finite sampling frequency and the use of integral controller to further improve the power control accuracy, are described. Both simulation and experimental results are used to compare conventional DPC and vector control, and to demonstrate the effectiveness and robustness of the proposed control strategies during active and reactive power steps, and line inductance variations.
Resumo:
Environmental protection has now become paramount as evidence mounts to support the thesis of human activity-driven global warming. A global reduction of the emissions of pollutants into the atmosphere is therefore needed and new technologies have to be considered. A large part of the emissions come from transportation vehicles, including cars, trucks and airplanes, due to the nature of their combustion-based propulsion systems. Our team has been working for several years on the development of high power density superconducting motors for aircraft propulsion and fuel cell based power systems for aircraft. This paper investigates the feasibility of all-electric aircraft based on currently available technology. Electric propulsion would require the development of high power density electric propulsion motors, generators, power management and distribution systems. The requirements in terms of weight and volume of these components cannot be achieved with conventional technologies; however, the use of superconductors associated with hydrogen-based power plants makes possible the design of a reasonably light power system and would therefore enable the development of all-electric aero-vehicles. A system sizing has been performed both for actuators and for primary propulsion. Many advantages would come from electrical propulsion such as better controllability of the propulsion, higher efficiency, higher availability and less maintenance needs. Superconducting machines may very well be the enabling technology for all-electric aircraft development.
Resumo:
This manuscript describes how motor behaviour researchers who are not at the same time expert roboticists may implement an experimental apparatus, which has the ability to dictate torque fields around a single joint on one limb or single joints on multiple limbs without otherwise interfering with the inherent dynamics of those joints. Such an apparatus expands the exploratory potential of the researcher wherever experimental distinction of factors may necessitate independent control of torque fields around multiple limbs, or the shaping of torque fields of a given joint independently of its plane of motion, or its directional phase within that plane. The apparatus utilizes torque motors. The challenge with torque motors is that they impose added inertia on limbs and thus attenuate joint dynamics. We eliminated this attenuation by establishing an accurate mathematical model of the robotic device using the Box-Jenkins method, and cancelling out its dynamics by employing the inverse of the model as a compensating controller. A direct measure of the remnant inertial torque as experienced by the hand during a 50 s period of wrist oscillations that increased gradually in frequency from 1.0 to 3.8 Hz confirmed that the removal of the inertial effect of the motor was effectively complete.