78 resultados para AC generators
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
This paper presents a new method for complex power flow tracing that can be used for allocating the transmission loss to loads or generators. Two algorithms for upstream tracing (UST) and downstream tracing (DST) of the complex power are introduced. UST algorithm traces the complex power extracted by loads back to source nodes and assigns a fraction of the complex power flow through each line to each load. DST algorithm traces the output of the generators down to the sink nodes determining the contributions of each generator to the complex power flow and losses through each line. While doing so, active- and reactive-power flows as well as complex losses are considered simultaneously, not separately as most of the available methods do. Transmission losses are taken into consideration during power flow tracing. Unbundling line losses are carried out using an equation, which has a physical basis, and considers the coupling between active- and reactive-power flows as well as the cross effects of active and reactive powers on active and reactive losses. The tracing algorithms introduced can be considered direct to a good extent, as there is no need for exhaustive search to determine the flow paths as these are determined in a systematic way during the course of tracing. Results of application of the proposed method are also presented.
Resumo:
This paper presents a new method for calculating the individual generators’ shares in line flows, line losses and loads. The method is described and illustrated on active power flows, but it can be applied in the same way to reactive power flows. Starting from a power flow solution, the line flow matrix is formed. This matrix is used for identifying node types, tracing the power flow from generators downstream to loads, and to determine generators’ participation factors to lines and loads. Neither exhaustive search nor matrix inversion is required. Hence, the method is claimed to be the least computationally demanding amongst all of the similar methods.
Resumo:
In this paper, a Radial Basis Function neural network based AVR is proposed. A control strategy which generates local linear models from a global neural model on-line is used to derive controller feedback gains based on the Generalised Minimum Variance technique. Testing is carried out on a micromachine system which enables evaluation of practical implementation of the scheme. Constraints imposed by gathering training data, computational load, and memory requirements for the training algorithm are addressed.
Resumo:
This paper presents a new method for calculating the individual generators' shares in line flows, line losses and loads. The method is described and illustrated on active power flows, but it can be applied in the same way to reactive power flows.
Resumo:
This paper presents a predictive current control strategy for doubly-fed induction generators (DFIG). The method predicts the DFIG’s rotor current variations in the synchronous reference frame fixed to the stator flux within a fixed sampling period. This is then used to directly calculate the required rotor voltage to eliminate the current errors at the end of the following sampling period. Space vector modulation is used to generate the required switching pulses within the fixed sampling period. The impact of sampling delay on the accuracy of the sampled rotor current is analyzed and detailed compensation methods are proposed to improve the current control accuracy and system stability. Experimental results for a 1.5 kW DFIG system illustrate the effectiveness and robustness of the proposed control strategy during rotor current steps and rotating speed variation. Tests during negative sequence current injection further demonstrate the excellent dynamic performance of the proposed PCC method.
Resumo:
A series of ultra-lightweight digital true random number generators (TRNGs) are presented. These TRNGs are based on the observation that, when a circuit switches from a metastable state to a bi-stable state, the resulting state may be random. Four such circuits with low hardware cost are presented: one uses an XOR gate; one uses a lookup table; one uses a multiplexer and an inverter; and one uses four transistors. The three TRNGs based on the first three circuits are implemented on a field programmable gate array and successfully pass the DIEHARD RNG tests and the National Institute of Standard and Technology (NIST) RNG tests. To the best of the authors' knowledge, the proposed TRNG designs are the most lightweight among existing TRNGs.