54 resultados para ABSOLUTE RAMAN INTENSITIES

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Density functional calculations, using B3LPY/6-31G(d) methods, have been used to investigate the conformations and vibrational (Raman) spectra of three short-chain fatty acid methyl esters (FAMEs) with the formula CnH2nO2 (n = 3-5). In all three FAMEs, the lowest energy conformer has a simple 'all-trans' structure but there are other conformers, with different torsions about the backbone, which lie reasonably close in energy to the global minimum. One result of this is that the solid samples we studied do not appear to consist entirely of the lowest energy conformer. Indeed, to account for the 'extra' bands that were observed in the Raman data but were not predicted for the all-trans conformer, it was necessary to add-in contributions from other conformers before a complete set of vibrational assignments could be made. Provided this was done, the agreement between experimental Raman frequencies and 6-31G(d) values (after scaling) was excellent, RSD = 12.6 cm(-1). However, the agreement between predicted and observed intensities was much less satisfactory. To confirm the validity of the approach followed by the 6-3 1 G(d) basis set, we used a larger basis set, Sadlej pVTZ, and found that these calculations gave accurate Raman intensities and simulated spectra (summed from two different conformers) that were in quantitative agreement with experiment. In addition, the unscaled Sadlej pVTZ, and the scaled 6-3 1 G(d) calculations gave the same vibrational mode assignments for all bands in the experimental data. This work provides the foundation for calculations on longer-chain FAMEs (which are closer to those found as triglycerides in edible fats and oils) because it shows that scaled 6-3 1 G(d) calculations give equally accurate frequency predictions, and the same vibrational mode assignments, as the much more CPU-expensive Sadlej pVTZ basis set calculations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Previous work by the authors Walker et al. [2007b. Fluidised bed characterisation using Raman spectroscopy: applications to pharmaceutical processing. Chemical Engineering Science 62, 3832–3838] illustrated that Raman spectroscopy could be used to provide 3-D maps of the concentration and chemical structure of particles in motion in a fluidised bed, within a relatively short (120 s) time window. Moreover, we reported that the technique, as outlined, has the potential to give detailed in-situ information on how the structure and composition of granules/powders within the fluidised bed (dryer or granulator) vary with the position and evolve with time. In this study we extended the original work by shortening the time window of the Raman spectroscopic analysis to 10 s, which has allowed the in-situ real-time characterisation of a fluidised bed granulation process. Here we show an important new use of the technique which allows in-situ measurement of the composition of the material within the fluidised bed in three spatial dimensions and as a function of time. This is achieved by recording Raman spectra using a probe positioned within the fluidised bed on a long-travel x–y–z stage. In these experiments the absolute Raman intensity is used to provide a direct measure of the amount of any given material in the probed volume, i.e. a particle density. Particle density profiles have been calculated over the granulation time and show how the volume of the fluidised bed decreases with an increase mean granule size. The Raman spectroscopy analysis indicated that nucleation/coalescence in this co-melt fluidised hot melt granulation system occurred over a relatively short time frame (t<30 s). The Raman spectroscopic technique demonstrated accurate correlation with independent granulation experiments which provided particle size distribution analysis. The similarity of the data indicates that the Raman spectra accurately represent solids ratios within the bed, and thus the techniques quantitative capabilities for future use in the pharmaceutical industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Absolute cross sections have been measured for single and double charge exchange and x-ray line emission for highly charged ions of C, N, 0, and Ne colliding with He, H-2 CO2, and H2O at collisions energies of 7q keV. Present results of charge exchange in He and H-2 compare favorably with previous results. For CO2 and H2O, where prior work is scarce, the classical overbarrier model is found to overestimate results by up to a factor of 3. An analysis of the relative intensities of the observed Lyman x-ray transitions indicates that capture into l states is not statistical, as collision velocities are insufficient to populate the highest angular-momentum states. The importance of autoionization following multiple capture is highlighted, and enhanced radiative stabilization following double capture is observed and compared to other studies. Present results are also discussed in terms of mechanisms likely to generate x-ray emission in comets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability of Raman spectroscopy and Fourier transform infrared (FT-IR) microscopy to discriminate between resins used for the manufacture of architectural finishes was examined in a study of 39 samples taken from a commercial resin library. Both Raman and FT-IR were able to discriminate between different types of resin and both split the samples into several groups (six for FT-IR, six for Raman), each of which gave similar, but not identical, spectra. In addition, three resins gave unique Raman spectra (four in FTIR). However, approximately half the library comprised samples that were sufficiently similar that they fell into a single large group, whether classified using FT-IR or Raman, although the remaining samples fell into much smaller groups. Further sub-division of the FT-IR groups was not possible because the experimental uncertainty was of similar magnitude to the within-group variation. In contrast, Raman spectroscopy was able to further discriminate between resins that fell within the same groups because the differences in the relative band intensities of the resins, although small, were larger than the experimental uncertainty.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spectral signal intensities, especially in 'real-world' applications with nonstandardized sample presentation due to uncontrolled variables/factors, commonly require additional spectral processing to normalize signal intensity in an effective way. In this study, we have demonstrated the complexity of choosing a normalization routine in the presence of multiple spectrally distinct constituents by probing a dataset of Raman spectra. Variation in absolute signal intensity (90.1% of total variance) of the Raman spectra of these complex biological samples swamps the variation in useful signals (9.4% of total variance), degrading its diagnostic and evaluative potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface-enhanced Raman (SERS) spectra of deoxyadenosine and 5'-dAMP on Ag and Au surfaces showed the protonation of both compounds in the N1 position, their orientation geometry on metal surfaces, and the formation of Ag+ complexes at alkaline pH on hydroxylamine-reduced Ag colloids. Interestingly, substitution at the N9 position caused dramatic changes in the relative band intensities within the spectra of both deoxyadenosine and 5'-dAMP compared to that of simple adenine, although they continued to be dominated by adenine vibrations. Concentration-dependent spectra of 5'-dAMP were observed, which matched that of adenine at high concentrations and that of deoxyadenosine at lower concentration (

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Raman spectroscopy with far-red excitation has been used to study seized, tableted samples of MDMA (N-methyl-3,4-methylenedioxyamphetamine) and related compounds (MDA, MDEA, MBDB, 2C-B and amphetamine sulfate), as well as pure standards of these drugs. We have found that by using far-red (785 nm) excitation the level of fluorescence background even in untreated seized samples is sufficiently low that there is little difficulty in obtaining good quality data with moderate 2 min data accumulation times. The spectra can be used to distinguish between even chemically-similar substances, such as the geometrical isomers MDEA and MBDB, and between different polymorphic/hydrated forms of the same drug. Moreover, these differences can be found even in directly recorded spectra of seized samples which have been bulked with other materials, giving a rapid and non-destructive method for drug identification. The spectra can be processed to give unambiguous identification of both drug and excipients (even when more than one compound has been used as the bulking agent) and the relative intensities of drug and excipient bands can be used for quantitative or at least semi-quantitative analysis. Finally, the simple nature of the measurements lends itself to automatic sample handling so that sample throughputs of 20 samples per hour can be achieved with no real difficulty.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Stein Collection in the British Library contains the Diamond Sutra, the world's oldest, dated, printed document. The paper of the Diamond Sutra and other documents from the Stein collection is believed to be dyed yellow by a natural extract, called huangbo, from the bark of Phellodendron amurense, which contains three major yellow chromophores: berberine, palmatine, and jatrorrhizine, Conservation of these documents requires definite information on the chemical composition of the dyes but no suitable, completely noninvasive analytical method is known. Here we report resonance Raman studies of a series of prate dyes, of plant materials and extracts, and of dyed ancient and modern paper samples. Resonance Raman spectroscopy is used to enhance the spectra of the dyes over the signals from the paper matrixes in which they are held. The samples an give resonance Raman spectra which are dominated by intense fluorescence, but by using SSRS (subtracted shifted Raman spectroscopy) we have obtained reliable spectra of the pure dyes, native bark from the Phellodendron amurense, modern paper dyed with huangbo extracted from this bark, and ancient paper samples. For both ancient paper samples whose pigment bands were detected, the relative intensities of the bands due to berberine and palmatine suggest that the ancient paper is richer in berberine than its modern counterpart, This is the first nondestructive in situ method for detection of these pigments in manuscripts, and as such has considerable potential benefit for the treatment of irreplaceable documents that are believed to be dyed with huangbo but documents on which conservation work cannot proceed without definite identification of the chemical compounds that they contain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resonance Raman (RR) spectroscopy has been used to probe the interaction between dipyridophenazine (dppz) complexes of ruthenium(II), [Ru(L)(2)(dppz)](2+) (L = 1,10-phenanthroline (1) and 2,2-bipyridyl (2)), and calf-thymus DNA. Ground electronic state RR spectra at selected probe wavelengths reveal enhancement patterns which reflect perturbation of the dppz-centered electronic transitions in the UV-vis spectra in the presence of DNA. Comparison of the RR spectra recorded of the short-lived MLCT excited states of both complexes in aqueous solution with those of the longer-lived states of the complexes in the DNA environment reveals changes to excited state modes, suggesting perturbation of electronic transitions of the dppz ligand in the excited state as a result of intercalation. The most prominent feature, at 1526 cm(-1), appears in the spectra of both 1 and 2 and is a convenient marker band for intercalation. For 1, the excited state studies have been extended to the A and A enantiomers. The marker band appears at the same frequency for both but with different relative intensities. This is interpreted as reflecting the distinctive response of the enantiomers to the chiral environment of the DNA binding sites. The results, together with some analogous data for other potentially intercalating complexes, are considered in relation to the more general application of time-resolved RR spectroscopy for investigation of intercalative interactions of photoexcited metal complexes with DNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first report of time-resolved resonance Raman (TR(3)) scattering in a supercritical fluid is presented. TR(3) spectra of the lowest triplet excited state (T-1) of anthracene in supercritical (SC) CO2 have been obtained over the pressure range 90-500 bar. These data have been complemented by conventional flash photolysis measurements of the excited state lifetime, transient absorbance difference, and fluorescence spectra over a similar pressure range. The spectroscopic data show systematic changes with increasing pressure; the Delta A spectra of the TI state recorded at two different temperatures display a red shift with increasing fluid pressure, which is in agreement with earlier work carried out over a smaller range of pressures. Similar shifts in the fluorescence are also observed. The vibrational frequencies of the T-1 state of anthracene are found to be relatively insensitive to applied pressure; indeed, the transient bands are readily identified by comparison with resonance Raman (RR) spectra of the T-1 state in cyclohexane solution. Small but well-defined shifts to lower cm(-1) with increasing pressure are observed in some of the vibrational bands of SC COE. The most marked change in the excited state Raman spectra is that the intensity of the T-1 anthracene features, relative to those of CO2, increases with applied pressure. The information which each of the above spectroscopic methods gives on the question of how pressure changes affect the structure and local environment of the excited state probe molecule in the SCF is discussed. Possible explanations for the observed increase in RR band intensities in terms of increased resonance Raman enhancement arising from the spectral shifts and/or the increased solubility of anthracene in CO2 with increasing pressure are also considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The resonance Raman spectra of the ground state and the lowest excited tripler state of free-base tetraphenylporphyrin and six of its isotopomers have been obtained using two-color time-resolved techniques. Ground-state spectra were recorded using low-energy 447 nm probe laser pulses, and triplet-state spectra were probed, with similar pulses, 30 ns after high-energy excitation with 532 nm pump pulses. Polarization data on both the ground and triplet states are also reported. The resonance Raman spectrum of the triplet is very different from that of the ground state but the combination of extensive isotope substitution with polarization data allows bands in the ground state to be assigned and corresponding bands in the tripler state to be located. Isotope shifts of the same bands in the S-0 and T-1 states are similar, implying that the compositions of the vibrational modes do not change significantly on excitation. Two of the strongest bands in the T-1 spectra are associated with phenyl ring substituents; these are shifted less than 5 cm(-1) between the S-0 and T-1 states so that bonding in the phenyl substituents is barely affected by excitation to the T-1 state. The changes in position of the porphyrin ring bands are larger, but still only tens of cm(-1) or less, the main changes in the spectra being due to differences in relative band intensities in the two states. The relatively small shifts in the porphyrin ring band positions which are observed show that the excitation energy is not localized on a single small region of the molecule but is delocalized over the entire porphyrin skeleton. This picture of an excited species with high chemical reactivity, but with individual bonds only slightly perturbed from the ground state, is contrasted with molecules, such as benzophenone, where excitation causes a large perturbation in the bonding within a single functional group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface-enhanced Raman scattering (SERS) excited at several visible wavelengths and recorded using a cooled charged-coupled device detector is reported from the mobile, interfacial, liquid-like metal films (MELLFs) formed when solutions of metal complexes or pyridine in chlorocarbon solvents are mixed with aqueous sols of silver or gold. MELLF formation has not previously been reported for gold sols or for pyridine as stabilizer. Comparison of the spectra for the MELLFs formed from individual metal complexes and from 50:50 mixtures show that the spectral patterns observed for the latter are distinctive and are not generally equivalent to the sum of the spectra associated with the individual complexes, in contrast to the situation observed for sols where the individual spectra do appear to be additive. Raman scattering from both gold and silver MELLFs is readily observed at excitation wavelengths in the red, around 750 nm, but at 514 nm only that from silver films is detectable. These findings are considered in terms of particle size and absorption band intensities. A preliminary study of the film surface topography and particle size was carried out by scanning tunnelling electron microscopy (STM) of Ag MELLFs deposited on gold-coated mica substrates. Computer-processed images of the STM data show the presence on the film surface of finger-like bars, 200-400 nm long with approximately square cross-section, 40-60 nm side, together with other smaller cuboid features. The implications of these findings in relation to SERS are briefly considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

White household paints are commonly encountered as evidence in the forensic laboratory but they often cannot be readily distinguished by color alone so Fourier transform infrared (FT-IR) microscopy is used since it can sometimes discriminate between paints prepared with different organic resins. Here we report the first comparative study of FT-IR and Raman spectroscopy for forensic analysis of white paint. Both techniques allowed the 51 white paint samples in the study to be classified by inspection as either belonging to distinct groups or as unique samples. FT-IR gave five groups and four unique samples; Raman gave seven groups and six unique samples. The basis for this discrimination was the type of resin and/ or inorganic pigments/extenders present. Although this allowed approximately half of the white paints to be distinguished by inspection, the other half were all based on a similar resin and did not contain the distinctive modifiers/pigments and extenders that allowed the other samples to be identified. The experimental uncertainty in the relative band intensities measured using FT-IR was similar to the variation within this large group, so no further discrimination was possible. However, the variation in the Raman spectra was larger than the uncertainty, which allowed the large group to be divided into three subgroups and four distinct spectra, based on relative band intensities. The combination of increased discrimination and higher sample throughput means that the Raman method is superior to FT-IR for samples of this type. © 2005 Society for Applied Spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large, thin (50 mu m) dry polymer sheets containing numerous surface-enhanced Raman spectroscopy (SERS) active Ag nanopartide aggregates have been prepared by drying aqueous mixtures of hydroxyethylcelloulose (HEC) and preaggregated Ag colloid in 10 x 10 cm molds. In these dry films, the particle aggregates are protected from the environment during storage and are easy to handle; for example, they can be cut to size with scissors. When in use, the highly swellable HEC polymer allowed the films to rapidly absorb aqueous analyte solutions while simultaneously releasing the Ag nanoparticle aggregates to interact with the analyte and generate large SERS signals. Either the films could be immersed in the analyte solution or 5 mu L droplets were applied to the surface; in the latter method, the local swelling caused the active area to dome upward, but the swollen film remained physically robust and could be handled as required. Importantly, encapsulation and release did not significantly compromise the SERS performance of the colloid; the signals given by the swollen films were similar to the very high signals obtained from the parent citrate-reduced colloid and were an order of magnitude larger than a commercially available nanoparticle substrate. These "Poly-SERS" films retained 70% of their SERS activity after being stored for 1 year in air. The films were sufficiently homogeneous to give a standard deviation of 3.2% in the absolute signal levels obtained from a test analyte, primarily due to the films' ability to suppress "coffee ring" drying marks, which meant that quantitative analysis without an internal standard was possible. The majority of the work used aqueous thiophenol as the test analyte; however, preliminary studies showed that the Poly-SERS films could also be used with nonaqueous solvents and for a range of other analytes including theophylline, a therapeutic drug, at a concentration as low as 1.0 x 10(-5) mol dm(-3) (1.8 mg/dm(3)), well below the sensitivity required for theophylline monitoring where the target range is 10-20 mg/dm(3).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abnormal anti-Stokes Raman scattering (AASR) was unambiguously observed in carbon nanotubes (CNT's). In contrast to traditional Raman scattering theory, the absolute value of the Raman frequency of the anti-Stokes peak is not the same as that of the corresponding Stokes peak. It was demonstrated that AASR scattering originates from the unique nanoscale cylindrical structure of CNT's that can be considered naturally as a graphite structure with an intrinsic defect from its rolling. The double-resonance Raman scattering theory was applied to interpret the scattering mechanism of the AASR phenomenon successfully and quantitatively.