27 resultados para AAC

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The isoleucyl-tRNA synthetase (ileS) gene was sequenced in toto from 9 and in part from 31 Staphylococcus aureus strains with various degrees of susceptibility to mupirocin. All strains for which the mupirocin MIC was greater than 8 µg/ml contained point mutations affecting the Rossman fold via Val-to-Phe changes at either residue 588 (V588F) or residue 631 (V631F). The importance of the V588F mutation was confirmed by an allele-specific PCR survey of 32 additional strains. Additional mutations of uncertain significance were found in residues clustered on the surface of the IleS protein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A colorimetric assay based on the reduction of a tetrazolium salt {2,3-bis[2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide (XTT)} for rapidly determining the susceptibility of Pseudomonas aeruginosa isolates to bactericidal antibiotics is described. There was excellent agreement between the tobramycin and ofloxacin MICs determined after 5 h using the XTT assay and after 18 h using conventional methods. The data suggests that an XTT-based assay could provide a useful method for rapidly determining the susceptibility of P. aeruginosa to bactericidal antibiotics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to evaluate the effects of antimicrobial drug use, gastric acid-suppressive agent use, and infection control practices on the incidence of Clostridium difficile-associated diarrhea (CDAD) in a 426-bed general teaching hospital in Northern Ireland. The study was retrospective and ecological in design. A multivariate autoregressive integrated moving average (time-series analysis) model was built to relate CDAD incidence with antibiotic use, gastric acid-suppressive agent use, and infection control practices within the hospital over a 5-year period (February 2002 to March 2007). The findings of this study showed that temporal variation in CDAD incidence followed temporal variations in expanded-spectrum cephalosporin use (average delay = 2 months; variation of CDAD incidence = 0.01/100 bed-days), broad-spectrum cephalosporin use (average delay = 2 months; variation of CDAD incidence = 0.02/100 bed-days), fluoroquinolone use (average delay = 3 months; variation of CDAD incidence = 0.004/100 bed-days), amoxicillin-clavulanic acid use (average delay = 1 month; variation of CDAD incidence = 0.002/100 bed-days), and macrolide use (average delay = 5 months; variation of CDAD incidence = 0.002/100 bed-days). Temporal relationships were also observed between CDAD incidence and use of histamine-2 receptor antagonists (H2RAs; average delay = 1 month; variation of CDAD incidence = 0.001/100 bed-days). The model explained 78% of the variance in the monthly incidence of CDAD. The findings of this study highlight a temporal relationship between certain classes of antibiotics, H2RAs, and CDAD incidence. The results of this research can help hospitals to set priorities for restricting the use of specific antibiotic classes, based on the size-effect of each class and the delay necessary to observe an effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pseudomonas elastase (LasB), a metalloprotease virulence factor, is known to play a pivotal role in pseudomonal infection. LasB is secreted at the site of infection, where it exerts a proteolytic action that spans from broad tissue destruction to subtle action on components of the host immune system. The former enhances invasiveness by liberating nutrients for continued growth, while the latter exerts an immunomodulatory effect, manipulating the normal immune response. In addition to the extracellular effects of secreted LasB, it also acts within the bacterial cell to trigger the intracellular pathway that initiates growth as a bacterial bio?lm. The key role of LasB in pseudomonal virulence makes it a potential target for the development of an inhibitor as an antimicrobial agent. The concept of inhibition of virulence is a recently established antimicrobial strategy, and such agents have been termed “second-generation” antibiotics. This approach holds promise in that it seeks to attenuate virulence processes without bactericidal action and, hence, without selection pressure for the emergence of resistant strains. A potent inhibitor of LasB,N-mercaptoacetyl-Phe-Tyr-amide (Ki 41 nM) has been developed, and its ability to block these virulence processes has been assessed. It has been demonstrated that thes compound can completely block the action of LasB on protein targets that are instrumental in bio?lm formation and immunomodulation. The novel LasB inhibitor has also been employed in bacterial-cell-based assays, to reduce the growth of pseudomonal bio?lms, and to eradicate bio?lm completely when used in combination with conventional antibiotics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antiretroviral entry inhibitors are now being considered as vaginally administered microbicide candidates for prevention of sexual transmission of human immunodeficiency virus. Previous studies testing the entry inhibitors maraviroc and CMPD167 in aqueous gel formulations showed efficacy in the macaque challenge model, although protection was highly dependent on the time period between initial gel application and subsequent challenge. In this paper, we describe the sustained release of the entry inhibitors maraviroc and CMPD167 from matrix-type silicone elastomer vaginal rings both in vitro and in vivo. Both inhibitors were released continuously over 28 days from rings in vitro, at rates of 100-2500 µg/day. In 28-day pharmacokinetic studies in rhesus macaques, the compounds were measured in the vaginal fluid and vaginal tissue; steady state fluid concentrations were ~106 fold greater than IC50 values for SHIV-162P3 inhibition in macaque lymphocytes in vitro. Plasma concentrations for both compounds were very low. Pretreatment of macaques with Depo-Provera® (DP), as commonly used in macaque challenge studies, was shown to significantly modify the bio-distribution of the inhibitors, but not the overall amount released. Vaginal fluid and tissue concentrations were significantly decreased while plasma levels increased with DP pretreatment. These observations have implications for designing macaque challenge experiments, and also for ring performance during the human female menstrual cycle. Copyright © 2012, American Society for Microbiology. All Rights Reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transcriptional regulators, such as SoxS, RamA, MarA, and Rob, which upregulate the AcrAB efflux pump, have been shown to be associated with multidrug resistance in clinically relevant Gram-negative bacteria. In addition to the multidrug resistance phenotype, these regulators have also been shown to play a role in the cellular metabolism and possibly the virulence potential of microbial cells. As such, the increased expression of these proteins is likely to cause pleiotropic phenotypes. Klebsiella pneumoniae is a major nosocomial pathogen which can express the SoxS, MarA, Rob, and RamA proteins, and the accompanying paper shows that the increased transcription of ramA is associated with tigecycline resistance (M. Veleba and T. Schneiders, Antimicrob. Agents Chemother. 56:4466-4467, 2012). Bioinformatic analyses of the available Klebsiella genome sequences show that an additional AraC-type regulator is encoded chromosomally. In this work, we characterize this novel AraC-type regulator, hereby called RarA (Regulator of antibiotic resistance A), which is encoded in K. pneumoniae, Enterobacter sp. 638, Serratia proteamaculans 568, and Enterobacter cloacae. We show that the overexpression of rarA results in a multidrug resistance phenotype which requires a functional AcrAB efflux pump but is independent of the other AraC regulators. Quantitative real-time PCR experiments show that rarA (MGH 78578 KPN_02968) and its neighboring efflux pump operon oqxAB (KPN_02969_02970) are consistently upregulated in clinical isolates collected from various geographical locations (Chile, Turkey, and Germany). Our results suggest that rarA overexpression upregulates the oqxAB efflux pump. Additionally, it appears that oqxR, encoding a GntR-type regulator adjacent to the oqxAB operon, is able to downregulate the expression of the oqxAB efflux pump, where OqxR complementation resulted in reductions to olaquindox MICs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tigecycline resistance in Klebsiella pneumoniae results from ramA upregulation that causes the overexpression of the efflux pump, AcrAB-TolC. Tigecycline mutants, derived from Ecl8?ramA, can exhibit a multidrug resistance phenotype due to increased transcription of the marA, rarA, acrAB, and oqxAB genes. These findings support the idea that tigecycline or multidrug resistance in K. pneumoniae, first, is not solely dependent on the ramA gene, and second, can arise via alternative regulatory pathways in K. pneumoniae. © 2012, American Society for Microbiology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RarA is an AraC-type regulator in Klebsiella pneumoniae, which, when overexpressed, confers a low-level multidrug-resistant (MDR) phenotype linked to the upregulation of both the acrAB and oqxAB efflux genes. Increased rarA expression has also been shown to be integral in the development of tigecycline resistance in the absence of ramA in K. pneumoniae. Given its phenotypic role in MDR, microarray analyses were performed to determine the RarA regulon. Transcriptome analysis was undertaken using strains Ecl8?rarA/pACrarA-2 (rarA-expressing construct) and Ecl8?rarA/pACYC184 (vector-only control) using bespoke microarray slides consisting of probes derived from the genomic sequences of K. pneumoniae MGH 78578 (NC_009648.1) and Kp342 (NC_011283.1). Our results show that rarA overexpression resulted in the differential expression of 66 genes (42 upregulated and 24 downregulated). Under the COG (clusters of orthologous groups) functional classification, the majority of affected genes belonged to the category of cell envelope biogenesis and posttranslational modification, along with genes encoding the previously uncharacterized transport proteins (e.g., KPN_03141, sdaCB, and leuE) and the porin OmpF. However, genes associated with energy production and conversion and amino acid transport/metabolism (e.g., nuoA, narJ, and proWX) were found to be downregulated. Biolog phenotype analyses demonstrated that rarA overexpression confers enhanced growth of the overexpresser in the presence of several antibiotic classes (i.e., beta-lactams and fluoroquinolones), the antifungal/antiprotozoal compound clioquinol, disinfectants (8-hydroxyquinoline), protein synthesis inhibitors (i.e., minocycline and puromycin), membrane biogenesis agents (polymyxin B and amitriptyline), DNA synthesis (furaltadone), and the cytokinesis inhibitor (sanguinarine). Both our transcriptome and phenotypic microarray data support and extend the role of RarA in the MDR phenotype of K. pneumoniae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plant pathogens are a serious problem for seed export, plant disease control and plant quarantine. Rapid and accurate screening tests are urgently required to protect and prevent plant diseases spreading worldwide. A novel multiplex detection method was developed based on microsphere immunoassays to simultaneously detect four important plant pathogens: a fruit blotch bacterium Acidovorax avenae subsp. citrulli (Aac), chilli vein-banding mottle virus (CVbMV, potyvirus), watermelon silver mottle virus (WSMoV, tospovirus serogroup IV) and melon yellow spot virus (MYSV, tospovirus). An antibody for each plant pathogen was linked on a fluorescence-coded magnetic microsphere set which was used to capture corresponding pathogen. The presence of pathogens was detected by R-phycoerythrin (RPE)-labeled antibodies specific to the pathogens. The assay conditions were optimized by identifying appropriate antibody pairs, blocking buffer, concentration of RPE-labeled antibodies and assay time. Once conditions were optimized, the assay was able to detect all four plant pathogens precisely and accurately with substantially higher sensitivity than enzyme-linked immunosorbent assay (ELISA) when spiked in buffer and in healthy watermelon leaf extract. The assay time of the microsphere immunoassay (1 hour) was much shorter than that of ELISA (4 hours). This system was also shown to be capable of detecting the pathogens in naturally infected plant samples and is a major advancement in plant pathogen detection. © 2013 Charlermroj et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have made a comparison of (a) different surface chemistries of surface plasmon resonance (SPR) sensor chips (such as carboxymethylated dextran and carboxymethylated C1) and (b) of different assay formats (direct, sandwich and subtractive immunoassay) in order to improve the sensitivity of the determination of the model bacteria Acidovorax avenae subsp. citrulli (Aac). The use of the carboxymethylated sensor chip C1 resulted in a better sensitivity than that of carboxymethylated dextran CM5 in all the assay formats. The direct assay format, in turn, exhibits the best sensitivity. Thus, the combination of a carboxymethylated sensor chip C1 with the direct assay format resulted in the highest sensitivity for Aac, with a limit of detection of 1.6x106 CFU mL-1. This SPR immunosensor was applied to the detection of Aac in watermelon leaf extracts spiked with the bacteria, and the lower LOD is 2.2x107 CFU mL-1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colistin resistance is rare in Acinetobacter baumannii, and little is known about its mechanism. We investigated the role of PmrCAB in this trait, using (i) resistant and susceptible clinical strains, (ii) laboratory-selected mutants of the type strain ATCC 19606 and of the clinical isolate ABRIM, and (iii) a susceptible/resistant pair of isogenic clinical isolates, Ab15/133 and Ab15/132, isolated from the same patient. pmrAB sequences in all the colistin-susceptible isolates were identical to reference sequences, whereas resistant clinical isolates harbored one or two amino acid replacements variously located in PmrB. Single substitutions in PmrB were also found in resistant mutants of strains ATCC 19606 and ABRIM and in the resistant clinical isolate Ab15/132. No mutations in PmrA or PmrC were found. Reverse transcriptase (RT)-PCR identified increased expression of pmrA (4- to 13-fold), pmrB (2- to 7-fold), and pmrC (1- to 3-fold) in resistant versus susceptible organisms. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry showed the addition of phosphoethanolamine to the hepta-acylated form of lipid A in the resistant variants and in strain ATCC 19606 grown under low-Mg induction conditions. pmrB gene knockout mutants of the colistin-resistant ATCC 19606 derivative showed >100-fold increased susceptibility to colistin and 5-fold decreased expression of pmrC; they also lacked the addition of phosphoethanolamine to lipid A. We conclude that the development of a moderate level of colistin resistance in A. baumannii requires distinct genetic events, including (i) at least one point mutation in pmrB, (ii) upregulation of pmrAB, and (iii) expression of pmrC, which lead to addition of phosphoethanolamine to lipid A. Copyright © 2011, American Society for Microbiology. All Rights Reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Respiratory infections caused by Klebsiella pneumoniae are characterized by high rates of mortality and morbidity. Management of these infections is often difficult, due to the high frequency of strains that are resistant to multiple antimicrobial agents. Multidrug efflux pumps play a major role as a mechanism of antimicrobial resistance in Gram-negative pathogens. In the present study, we investigated the role of the K. pneumoniae AcrRAB operon in antimicrobial resistance and virulence by using isogenic knockouts deficient in the AcrB component and the AcrR repressor, both derived from the virulent strain 52145R. We demonstrated that the AcrB knockout was more susceptible, not only to quinolones, but also to other antimicrobial agents, including beta-lactams, than the wild-type strain and the AcrR knockout. We further showed that the AcrB knockout was more susceptible to antimicrobial agents present in human bronchoalveolar lavage fluid and to human antimicrobial peptides than the wild-type strain and the AcrR knockout. Finally, the AcrB knockout exhibited a reduced capacity to cause pneumonia in a murine model, in contrast to the wild-type strain. The results of this study suggest that, in addition to contributing to the multidrug resistance phenotype, the AcrAB efflux pump may represent a novel virulence factor required for K. pneumoniae to resist innate immune defense mechanisms of the lung, thus facilitating the onset of pneumonia.