6 resultados para 78-543A

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Absolute and differential chemical abundances are presented for the largest group of massive stars in M31 studied to date. These results were derived from intermediate resolution spectra of seven B-type supergiants, lying within four OB associations covering a galactocentric distance of 5-12 kpc. The results are mainly based on an LTE analysis, and we additionally present a full non-LTE, unified model atmosphere analysis of one star (OB 78-277) to demonstrate the reliability of the differential LTE technique. A comparison of the stellar oxygen abundance with that of previous nebular results shows that there is an off set of between similar to0.15-0.4 dex between the two methods which is critically dependent on the empirical calibration adopted for the R 23 parameter with [O/H]. However within the typical errors of the stellar and nebular analyses (and given the strength of dependence of the nebular results on the calibration used) the oxygen abundances determined in each method are fairly consistent. We determine the radial oxygen abundance gradient from these stars, and do not detect any systematic gradient across this galactocentric range. We find that the inner regions of M31 are not, as previously thought, very "metal rich". Our abundances of C, N, O, Mg, Si, Al, S and Fe in the M31 supergiants are very similar to those of massive stars in the solar neighbourhood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the design, implementation, and characterization of a new type of passive power splitting and combining structure for use in a differential four-way power-combining amplifier operating at E-band. In order to achieve lowest insertion loss, input and output coils inductances are resonated with shunt capacitances. Simple C-L-C and L-C networks are proposed in order to compensate inductive loading due to routing line that would otherwise introduce mismatch and increase loss. Across 78-86 GHz band, measured insertion loss is about 7 dB. Measured return losses are >10 dB from 73 GHz to 94 GHz at the input port and >9 dB from 60 GHz to 94 GHz at the output port. When integrated with driver and power amplifier cells, the simulated complete circuit exhibits 18.2 dB gain and 20.3 dBm saturated output power.