3 resultados para 317.1

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nine H II regions of the LMC were mapped in (CO)-C-13(1-0) and three in (CO)-C-12(1-0) to study the physical properties of the interstellar medium in the Magellanic Clouds. For N113 the molecular core is found to have a peak position which differs from that of the associated H II region by 20 ''. Toward this molecular core the (CO)-C-12 and (CO)-C-13 peak T-MB line temperatures of 7.3 K and 1.2 K are the highest so far found in the Magellanic Clouds. The molecular concentrations associated with N113, N44BC, N159HW, and N214DE in the LMC and LIRS 36 in the SMC were investigated in a variety of molecular species to study the chemical properties of the interstellar medium. I(HCO+)/I(HCN) and I(HCN)/I(HNC) intensity ratios as well as lower limits to the I((CO)-C-13)/I((CO)-O-18) ratio were derived for the rotational 1-0 transitions. Generally, HCO+ is stronger than HCN, and HCN is stronger than HNC. The high relative HCO+ intensities are consistent with a high ionization flux from supernovae remnants and young stars, possibly coupled with a large extent of the HCO+ emission region. The bulk of the HCN arises from relatively compact dense cloud cores. Warm or shocked gas enhances HCN relative to HNC. From chemical model calculations it is predicted that I(HCN)/I(HNC) close to one should be obtained with higher angular resolution (less than or similar to 30 '') toward the cloud cores. Comparing virial masses with those obtained from the integrated CO intensity provides an H-2 mass-to-CO luminosity conversion factor of 1.8 x 10(20) mol cm(-2) (K km s(-1))(-1) for N113 and 2.4 x 10(20) mol cm(-2) (K km s(-1))(-1) for N44BC. This is consistent with values derived for the Galactic disk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our objective is to define differences in circulating lipoprotein subclasses between intensive vs. conventional management of Type 1 diabetes during the randomization phase of the Diabetes Control and Complications Trial (DCCT). Nuclear magnetic resonance-determined lipoprotein subclass profiles (NMR-LSP), which estimate molar subclass concentrations and mean particle diameters, were determined in 1,294 DCCT subjects after a median of five (interquartile range: four, six) years following randomization to intensive or conventional diabetes management. In cross-sectional analyses, we compared standard lipids and NMR-LSP between treatment groups. Standard total-, LDL- and HDL-cholesterol levels were similar between randomization groups, while triglyceride levels were lower in the intensively treated group. NMR-LSP showed that intensive therapy was associated with larger LDL diameter (20.7 vs. 20.6 nm, p=0.01) and lower levels of small LDL (median: 465 vs. 552 nmol/l, p=0.007), total IDL/LDL (mean: 1000 vs. 1053 nmol/l, p=0.01), and small HDL (mean: 17.3 vs. 18.6 μmol/l, p<0.0001), the latter accounting for reduced total HDL (mean: 33.8 vs. 34.8 μmol/l, p=0.01). In conclusion, intensive diabetes therapy was associated with potentially favorable changes in LDL and HDL subclasses in sera. Further research will determine whether these changes contribute to the beneficial effects of intensive diabetes management on vascular complications.