11 resultados para 1995_12080748 Optics-10

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A refined theoretical approach has been developed to study the double-differential cross sections (DDCS's) in proton-helium collisions as a function of the ratio of ionized electron velocity to the incident proton velocity. The refinement is done in the present coupled-channel calculation by introducing a continuum distorted wave in the final state coupled with discrete states including direct as well as charge transfer channels. It is confirmed that the electron-capture-to-the-continuum (ECC) peak is slightly shifted to a lower electron velocity than the equivelocity position. Comparing measurements and classical trajectory Monte Carlo (CTMC) calculations at 10 and 20 keV proton energies, excellent agreement of the ECC peak heights is achieved at both energies. However, a minor disagreement in the peak positions between the present calculation and the CTMC results is noted. A smooth behavior of the DDCS is found in the present calculation on both sides of the peak whereas the CTMC results show some oscillatory behavior particularly to the left of the peak, associated with the statistical nature of CTMC calculations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metrology of XUV beams (X-ray lasers, high-harmonic generation and VUV free-electron lasers) is of crucial importance for the development of applications. We have thus developed several new optical systems enabling us to measure the optical properties of XUV beams. By use of a Michelson interferometer working as a Fourier-transform spectrometer, the line shapes of different X-ray lasers have been measured with a very high accuracy (Deltalambda/lambdasimilar to10(-6)). Achievement of the first XUV wavefront sensor has enabled us to measure the beam quality of laser-pumped as well as discharge-pumped X-ray lasers. A capillary discharge X-ray laser has demonstrated a very good wavefront allowing us to achieve an intensity as high as 3x10(14) W cm(-2) by focusing with a f=5 cm mirror. The sensor accuracy has been measured using a calibrated spherical wave generated by diffraction. The accuracy has been estimated to be as good as lambda/120 at 13 nm. Commercial developments are underway. At Laboratoire d'Optique Appliquee, we are setting up a new beamline based on high-harmonic generation in order to start the femtosecond, coherent XUV optic .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The solubility and uniform distribution of lanthanide complexes in sol-get glasses can be improved by covalently linking the complexes to the sol-gel matrix. In this study, several lanthanide beta-diketonate complexes (Ln = Nd, Sm, Eu, Tb, Er, Yb) were immobilized on a 1,10-phenanthroline functionalized sol-gel glass. For the europium(Ill) complex, a sol-gel material of diethoxydimethylsilane (DEDMS) with polymer-like properties was derived. For the other lanthanide complexes, the sol-gel glass was prepared by using a matrix of tetramethoxysilane (TMOS) and DEDMS. Both systems were prepared under neutral reaction conditions. High-resolution emission and excitation spectra were recorded. The luminescence lifetimes were measured. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a study on the effect of the alkyl chain length of the imidazolium ring in 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids, [C1CnIm][NTf2] (n = 2 to 10), on the mixing properties of (ionic liquid + alcohol) mixtures (enthalpy and volume). We have measured small excess molar volumes with highly asymmetric curves as a function of mole fraction composition (S-shape) with more negative values in the alcohol-rich regions. The excess molar volumes increase with the increase of the alkyl-chain length of the imidazolium cation of the ionic liquid. The values of the partial molar excess enthalpy and the enthalpy of mixing are positive and, for the case of methanol, do not vary monotonously with the length of the alkyl side-chain of the cation on the ionic liquid – increasing from n = 2 to 6 and then decreasing from n = 8. This non-monotonous variation is explained by a more favourable interaction of methanol with the cation head group of the ionic liquid for alkyl chains longer than eight carbon atoms. It is also observed that the mixing is less favourable for the smaller alcohols, the enthalpy of mixing decreasing to less positive values as the alkyl chain of the alcohol increases. Based on the data from this work and on the knowledge of the vapour pressure of {[C1CnIm][NTf2] + alcohol} binary mixtures at T = 298 K reported in the literature, the excess Gibbs free energy, excess enthalpy and excess entropy could be then calculated and it was observed that these mixtures behave like the ones constituted by a non-associating and a non-polar component, with its solution behaviour being determined by the enthalpy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, the use of plasma optics to improve temporal pulse contrast has had a remarkable impact on the field of high- power laser-solid density interaction physics. Opening an avenue to previously unachievable plasma density gradients in the high intensity focus, this advance has enabled researchers to investigate new regimes of harmonic generation and ion acceleration. Until now, however, plasma optics for fundamental laser reflection have been used in the sub-relativistic intensity regime (10(15) - 10(16)Wcm(-2)) showing high reflectivity (similar to 70%) and good focusability. Therefore, the question remains as to whether plasma optics can be used for such applications in the relativistic intensity regime (> 10(18)Wcm(-2)). Previous studies of plasma mirrors (PMs) indicate that, for 40 fs laser pulses, the reflectivity fluctuates by an order of magnitude and that focusability of the beam is lost as the intensity is increased above 5 x 10(16)Wcm(-2). However, these experiments were performed using laser pulses with a contrast ratio of similar to 10(7) to generate the reflecting surface. Here, we present results for PM operation using high contrast laser pulses resulting in a new regime of operation - the high contrast plasma mirror (HCPM). In this regime, pulses with contrast ratio > 10(10) are used to form the PM surface at > 10(19)Wcm(-2), displaying excellent spatial filtering, reflected near- field beam profile of the fundamental beam and reflectivities of 60 +/- 5%. Efficient second harmonic generation is also observed with exceptional beam quality suggesting that this may be a route to achieving the highest focusable harmonic intensities. Plasma optics therefore offer the opportunity to manipulate ultra-intense laser beams both spatially and temporally. They also allow for ultrafast frequency up-shifting without detrimental effects due to group velocity dispersion (GVD) or reduced focusability which frequently occur when nonlinear crystals are used for frequency conversion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semiclassical nonlocal optics based on the hydrodynamic description of conduction electrons might be an adequate tool to study complex phenomena in the emerging field of nanoplasmonics. With the aim of confirming this idea, we obtain the local and nonlocal optical absorption spectra in a model nanoplasmonic device in which there are spatial gaps between the components at nanometric and subnanometric scales. After a comparison against time-dependent density functional calculations, we conclude that hydrodynamic nonlocal optics provides absorption spectra exhibiting qualitative agreement but not quantitative accuracy. This lack of accuracy, which is manifest even in the limit where induced electric currents are not established between the constituents of the device, is mainly due to the poor description of induced electron densities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The simulation of open quantum dynamics has recently allowed the direct investigation of the features of system-environment interaction and of their consequences on the evolution of a quantum system. Such interaction threatens the quantum properties of the system, spoiling them and causing the phenomenon of decoherence. Sometimes however a coherent exchange of information takes place between system and environment, memory effects arise and the dynamics of the system becomes non-Markovian. Here we report the experimental realisation of a non-Markovian process where system and environment are coupled through a simulated transverse Ising model. By engineering the evolution in a photonic quantum simulator, we demonstrate the role played by system-environment correlations in the emergence of memory effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an ab initio real-time-based computational approach to study nonlinear optical properties in condensed matter systems that is especially suitable for crystalline solids and periodic nanostructures. The equations of motion and the coupling of the electrons with the external electric field are derived from the Berry-phase formulation of the dynamical polarization [Souza et al., Phys. Rev. B 69, 085106 (2004)]. Many-body effects are introduced by adding single-particle operators to the independent-particle Hamiltonian. We add a Hartree operator to account for crystal local effects and a scissor operator to correct the independent particle band structure for quasiparticle effects. We also discuss the possibility of accurately treating excitonic effects by adding a screened Hartree-Fock self-energy operator. The approach is validated by calculating the second-harmonic generation of SiC and AlAs bulk semiconductors: an excellent agreement is obtained with existing ab initio calculations from response theory in frequency domain [Luppi et al., Phys. Rev. B 82, 235201 (2010)]. We finally show applications to the second-harmonic generation of CdTe and the third-harmonic generation of Si. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arrays of vertically aligned gold nanotubes are fabricated over several square centimetres which display a geometry tunable plasmonic extinction peak at visible wavelengths and at normal incidence. The fabrication method gives control over nanotube dimensions with inner core diameters of 15–30 nm, wall thicknesses of 5–15 nm and nanotube lengths of up to 300 nm. It is possible to tune the position of the extinction peak through the wavelength range 600–900 nm by varying the inner core diameter and wall thickness. The experimental data are in agreement with numerical modelling of the optical properties which further reveal highly localized and enhanced electric fields around the nanotubes. The tunable nature of the optical response exhibited by such structures could be important for various label-free sensing applications based on both refractive index sensing and surface-enhanced Raman scattering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Critical phenomena involve structural changes in the correlations of its constituents. Such changes can be reproduced and characterized in quantum simulators able to tackle medium-to-large-size systems. We demonstrate these concepts by engineering the ground state of a three-spin Ising ring by using a pair of entangled photons. The effect of a simulated magnetic field, leading to a critical modification of the correlations within the ring, is analysed by studying two- and three-spin entanglement. In particular, we connect the violation of a multipartite Bell inequality with the amount of tripartite entanglement in our ring.