5 resultados para 170-1042B
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The gram-negative bacterium Pseudomonas cichorii 170, isolated from soil that was repeatedly treated with the nematocide 1,3-dichloropropene, could utilize low concentrations of 1,3-dichloropropene as a sole carbon and energy source, Strain 170 was also able to grow on 3-chloroallyl alcohol, 3-chloroacrylic acid, and several 1-halo-n-alkanes. This organism produced at least three different dehalogenases: a hydrolytic haloalkane dehalogenase specific for haloalkanes and two 3-chloroacrylic acid dehalogenases, one specific for cis-3-chloroacrylic acid and the other specific for trans-3-chloroacrylic acid. The haloalkane dehalogenase and the trans-3-chloroacrylic acid dehalogenase were expressed constitutively, whereas the cis-3-chloroacrylic acid dehalogenase was inducible, The presence of these enzymes indicates that 1,3-dichloropropene is hydrolyzed to 3-chloroallyl alcohol, which is oxidized in two steps to 3-chloroacrylic acid. The latter compound is then dehalogenated, probably forming malonic acid semialdehyde. The haloalkane dehalogenase gene, which is involved in the conversion of 1,3-dichloropropene to 3-chloroallyl alcohol, was cloned and sequenced, and this gene turned out to be identical to the previously studied dhaA gene of the gram-positive bacterium Rhodococcus rhodochrous NCIMB13063, Mutants resistant to the suicide substrate 1,2-dibromoethane lacked haloalkane dehalogenase activity and therefore could not utilize haloalkanes for growth. PCR analysis showed that these mutants had lost at least part of the dhaA gene.
Resumo:
Unfavorable work characteristics, such as low job control and too high or too low job demands, have been suggested to increase the likelihood of physical inactivity during leisure time, but this has not been verified in large-scale studies. The authors combined individual-level data from 14 European cohort studies (baseline years from 19851988 to 20062008) to examine the association between unfavorable work characteristics and leisure-time physical inactivity in a total of 170,162 employees (50 women; mean age, 43.5 years). Of these employees, 56,735 were reexamined after 29 years. In cross-sectional analyses, the odds for physical inactivity were 26 higher (odds ratio 1.26, 95 confidence interval: 1.15, 1.38) for employees with high-strain jobs (low control/high demands) and 21 higher (odds ratio 1.21, 95 confidence interval: 1.11, 1.31) for those with passive jobs (low control/low demands) compared with employees in low-strain jobs (high control/low demands). In prospective analyses restricted to physically active participants, the odds of becoming physically inactive during follow-up were 21 and 20 higher for those with high-strain (odds ratio 1.21, 95 confidence interval: 1.11, 1.32) and passive (odds ratio 1.20, 95 confidence interval: 1.11, 1.30) jobs at baseline. These data suggest that unfavorable work characteristics may have a spillover effect on leisure-time physical activity.
Resumo:
The Faraday Discussion Mechanochemistry: From Functional Solids to Single Molecules which took place 21-23 May 2014 in Montreal, Canada, brought together a diversity of academic and industrial researchers, experimentalists and theoreticians, students, as well as experienced researchers, to discuss the changing face of mechanochemistry, an area with a long history and deep connections to manufacturing, that is currently undergoing vigorous renaissance and rapid expansion in a number of areas, including supramolecular chemistry, smart polymers, metal-organic frameworks, pharmaceutical materials, catalytic organic synthesis, as well as mineral and biomass processing and nanoparticle synthesis.
Resumo:
Iron is the main constituent of the core of rocky planets; therefore, understanding its phase diagram under extreme conditions is fundamental to model the planets’ evolution. Using dynamic compression by laser-driven shocks, pressure and temperature conditions close to what is found in these cores can be reached. However, it remains unclear whether phase boundaries determined at nanosecond timescales agree with static compression. Here we observed the presence of solid hexagonal close-packed iron at 170 GPa and 4,150 K, in a part of the iron phase diagram, where either a different solid structure or liquid iron has been proposed. This X-ray diffraction experiment confirms that laser compression is suitable for studying iron at conditions of deep planetary interiors difficult to achieve with static compression techniques.