7 resultados para 070706 Veterinary Medicine
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Residues of veterinary medicines are a food safety issue regulated by European legislation. The occurrence of animal diseases necessitating application of veterinary medicines is significantly affected by global and local climate changes. This review assesses potential impacts of climate change on residues in food produced on the island of Ireland. Use of various classes of veterinary drugs in light of predicted local climate change is reviewed with particular emphasis on anthelmintic drugs and consideration is given to residues accumulating in the environment. Veterinary medicine use is predicted to increase as disease burdens increase due to varied climate effects. Locally relevant mitigation and adaptation strategies are suggested to ensure climate change does not adversely affect food safety via increasing drug residues.
Resumo:
An antibody was generated that can bind metronidazole (MNZ), a nitroimidazole drug used in veterinary medicine to treat poultry for coccidiosis and histomoniasis. A direct competitive enzyme-linked immunosorbent assay (cELISA) is described. It was used to characterise binding of this antibody to a number of nitroimidazole drugs. It displayed cross-reactivity with dimetridazole (DMZ), ronidazole (RNZ), hydroxydimetridazole (DMZOH), and ipronidazole (IPZ).
Resumo:
beta-Agonists are among the most widely abused drugs in veterinary medicine for the illegal promotion of farm animal growth. An array of analytical procedures has been developed to detect the residues of these compounds in many biological materials. As the number of beta-agonist formulations increases, it has become increasingly difficult to devise screening techniques capable of detecting a broad spectrum of these residues in a single test. A dual immunoassay based on time-resolved fluorescence was developed that incorporated a monoclonal antibody raised to tertiary butyl amines and a polyclonal antibody to biphenolic beta-agonists. This assay was capable of detecting residues of a range of beta-agonists present in bovine urine without the need for sample extraction. The limits of detection of the assay ranged from 1 to 8.5 ng ml(-1) depending on the cross-reactivity of individual compounds with the antibodies employed in the procedure.
Resumo:
Zeranol and two Fusarium toxins, alpha-zearalenol and beta-zearalenol, were confirmed by gaschromatography/mass spectrometry (GC/MS) in bovine bile samples referred to this laboratory for analysis. No evidence of zeranol abuse was found on-farm. Given the recent suggestion that zeranol might arise from the metabolism of these Fusarium toxins, and the finding of zeranol in bovine and ovine urine across the EU, it. was concluded that the residues had arisen as a result of natural metabolism.
Resumo:
The European badger (Meles meles) is a natural reservoir for Mycobacterium bovis, the causative agent of Bovine Tuberculosis, and has consequently been implicated in transmission of the disease to cattle. This study describes application of a novel M. bovis-specific immunochromatographic (lateral flow) assay in combination with immunomagnetic separation (IMS-LFD), to test badger faeces samples. In total, 441 faeces samples from badgers of unknown disease status collected from latrines at 110 badger setts throughout Northern Ireland (NI) and 100 faeces samples from badgers of known infection status from Great Britain (GB) were tested. Faeces (approx. 1g) was homogenised in 9 ml phosphate buffered saline, filtered (70 µm), and then 6-8 ml subjected to the IMS-LFD test. Residual clarified faecal homogenates were subjected to automated IMS followed by MGIT™ liquid culture (AIMS-MGIT™ culture) and qPCR (AIMS-qPCR). Evidence for the presence of M. bovis was obtained for 78 (18%), 61 (14%) and 140 (32%) of 441 NI badger faeces samples, and 10 (10%), 41 (41%) and 56 (56%) of 100 GB badger faeces samples, by IMS-LFD, AIMS-MGIT culture and AIMS-qPCR tests, respectively. The IMS-LFD test was less sensitive than AIMS-qPCR for detection of M. bovis and was, therefore, detecting badgers shedding high numbers of M. bovis in their faeces only. However, these ‘super shedders’ may be primarily responsible for the spread of Bovine Tuberculosis so are, therefore, an important target. This non-invasive test could form the basis of a field surveillance tool to indicate infected badger groups which are actively spreading M. bovis.
Resumo:
The risks associated with zoonotic infections transmitted by companion animals are a serious public health concern: the control of zoonoses incidence in domestic dogs, both owned and stray, is hence important to protect human health. Integrated dog population management (DPM) programs, based on the availability of information systems providing reliable data on the structure and composition of the existing dog population in a given area, are fundamental for making realistic plans for any disease surveillance and action system. Traceability systems, based on the compulsory electronic identification of dogs and their registration in a computerised database, are one of the most effective ways to ensure the usefulness of DPM programs. Even if this approach provides many advantages, several areas of improvement have emerged in countries where it has been applied. In Italy, every region hosts its own dog register but these are not compatible with one another. This paper shows the advantages of a web-based-application to improve data management of dog regional registers. The approach used for building this system was inspired by farm animal traceability schemes and it relies on a network of services that allows multi-channel access by different devices and data exchange via the web with other existing applications, without changing the pre-existing platforms. Today the system manages a database for over 300,000 dogs registered in three different Italian regions. By integrating multiple Web Services, this approach could be the solution to gather data at national and international levels at reasonable cost and creating a traceability system on a large scale and across borders that can be used for disease surveillance and development of population management plans. © 2012 Elsevier B.V.