42 resultados para Émotions
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
This paper presents generalized Laplacian eigenmaps, a novel dimensionality reduction approach designed to address stylistic variations in time series. It generates compact and coherent continuous spaces whose geometry is data-driven. This paper also introduces graph-based particle filter, a novel methodology conceived for efficient tracking in low dimensional space derived from a spectral dimensionality reduction method. Its strengths are a propagation scheme, which facilitates the prediction in time and style, and a noise model coherent with the manifold, which prevents divergence, and increases robustness. Experiments show that a combination of both techniques achieves state-of-the-art performance for human pose tracking in underconstrained scenarios.
Resumo:
High-cadence, multiwavelength observations and simulations are employed for the analysis of solar photospheric magnetic bright points (MBPs) in the quiet Sun. The observations were obtained with the Rapid Oscillations in the Solar Atmosphere (ROSA) imager and the Interferometric Bidimensional Spectrometer at the Dunn Solar Telescope. Our analysis reveals that photospheric MBPs have an average transverse velocity of approximately 1 km s-1, whereas their chromospheric counterparts have a slightly higher average velocity of 1.4 km s-1. Additionally, chromospheric MBPs were found to be around 63 per cent larger than the equivalent photospheric MBPs. These velocity values were compared with the output of numerical simulations generated using the muram code. The simulated results were similar, but slightly elevated, when compared to the observed data. An average velocity of 1.3 km s-1 was found in the simulated G-band images and an average of 1.8 km s-1 seen in the velocity domain at a height of 500 km above the continuum formation layer. Delays in the change of velocities were also analysed. Average delays of ˜4 s between layers of the simulated data set were established and values of ˜29 s observed between G-band and Ca ii K ROSA observations. The delays in the simulations are likely to be the result of oblique granular shock waves, whereas those found in the observations are possibly the result of a semi-rigid flux tube.
Resumo:
Motion transparency provides a challenging test case for our understanding of how visual motion, and other attributes, are computed and represented in the brain. However, previous studies of visual transparency have used subjective criteria which do not confirm the existence of independent representations of the superimposed motions. We have developed measures of performance in motion transparency that require observers to extract information about two motions jointly, and therefore test the information that is simultaneously represented for each motion. Observers judged whether two motions were at 90 to one another; the base direction was randomized so that neither motion taken alone was informative. The precision of performance was determined by the standard deviations (S.D.s) of probit functions fitted to the data. Observers also made judgments of orthogonal directions between a single motion stream and a line, for one of two transparent motions against a line and for two spatially segregated motions. The data show that direction judgments with transparency can be made with comparable accuracy to segregated (non-transparent) conditions, supporting the idea that transparency involves the equivalent representation of two global motions in the same region. The precision of this joint direction judgment is, however, 2–3 times poorer than that for a single motion stream. The precision in directional judgment for a single stream is reduced only by a factor of about 1.5 by superimposing a second stream. The major effect in performance, therefore, appears to be associated with the need to compute and compare two global representations of motion, rather than with interference between the dot streams per se. Experiment 2tested the transparency of motions separated by a range of angles from 5 to 180 by requiring subjects to set a line matching the perceived direction of each motion. The S.D.s of these settings demonstrated that directions of transparent motions were represented independently for separations over 20. Increasing dot speeds from 1 to 10 deg/s improved directional performance but had no effect on transparency perception. Transparency was also unaffected by variations of density between 0.1 and 19 dots/deg2
Resumo:
Direction repulsion describes the phenomenon in which observers typically overestimate the direction difference between two superimposed motions moving in different directions (Marshak & Sekuler, Science 205(1979) 1399). Previous research has found that, when a relatively narrow range of distractor speeds is considered, direction repulsion of a target motion increases monotonically with increasing speed of the distractor motion. We sought to obtain a more complete measurement of this speed-tuning function by considering a wider range of distractor speeds than has previously been used. Our results show that, contrary to previous reports, direction repulsion as a function of distractor speed describes an inverted U-function. For a target of 2.5deg/s, we demonstrate that the attenuation of repulsion magnitude with high-speed disractors can be largely explained in terms of the reduced apparent contrast of the distractor. However, when we reduce target motion speed, this no longer holds. When considered from the perspective of Edwards et al.s (Edwards, Badcock, & Smith, Vision Research 38 (1998) 1573) two global-motion channels, our results suggest that direction repulsion is speed dependent when the distractor and target motions are processed by different globalmotion channels, but is not speed dependent when both motions are processed by the same, high-speed channel. The implications of these results for models of direction repulsion are discussed.
Resumo:
Equilibrium distances, binding energies and dissociation energies for the ground and low-lying states of the hydrogen molecular ion in a strong magnetic field parallel to the internuclear axis are calculated and refined, by using the two- dimensional pseudospectral method. High-precision results are presented for the binding energies over a wider field regime than already given in the literature (Kravchenko and Liberman 1997 Phys. Rev. A 55 2701). The present work removes a long- standing discrepancy for the R-eq value in the 1sigma(u) state at a field strength of 1.0 x 10(6) T. The dissociation energies of the antibonding 1pi(g) state induced by magnetic fields are determined accurately. We have also observed that the antibonding 1pi(g) potential energy curve develops a minimum if the field is sufficiently strong. Some unreliable results in the literature are pointed out and discussed. A way to efficiently treat vibrational processes and coupling between the nuclear and the electronic motions in magnetic fields is also suggested within a three-dimensional pseudospectral scheme.
Resumo:
Modelling Joule heating is a difficult problem because of the need to introduce correct correlations between the motions of the ions and the electrons. In this paper we analyse three different models of current induced heating (a purely classical model, a fully quantum model and a hybrid model in which the electrons are treated quantum mechanically and the atoms are treated classically). We find that all three models allow for both heating and cooling processes in the presence of a current, and furthermore the purely classical and purely quantum models show remarkable agreement in the limit of high biases. However, the hybrid model in the Ehrenfest approximation tends to suppress heating. Analysis of the equations of motion reveals that this is a consequence of two things: the electrons are being treated as a continuous fluid and the atoms cannot undergo quantum fluctuations. A means for correcting this is suggested.
Resumo:
We present a fast and efficient hybrid algorithm for selecting exoplanetary candidates from wide-field transit surveys. Our method is based on the widely used SysRem and Box Least-Squares (BLS) algorithms. Patterns of systematic error that are common to all stars on the frame are mapped and eliminated using the SysRem algorithm. The remaining systematic errors caused by spatially localized flat-fielding and other errors are quantified using a boxcar-smoothing method. We show that the dimensions of the search-parameter space can be reduced greatly by carrying out an initial BLS search on a coarse grid of reduced dimensions, followed by Newton-Raphson refinement of the transit parameters in the vicinity of the most significant solutions. We illustrate the method's operation by applying it to data from one field of the SuperWASP survey, comprising 2300 observations of 7840 stars brighter than V = 13.0. We identify 11 likely transit candidates. We reject stars that exhibit significant ellipsoidal variations caused indicative of a stellar-mass companion. We use colours and proper motions from the Two Micron All Sky Survey and USNO-B1.0 surveys to estimate the stellar parameters and the companion radius. We find that two stars showing unambiguous transit signals pass all these tests, and so qualify for detailed high-resolution spectroscopic follow-up.
Resumo:
The work presented here is aimed at determining the potential and limitations of Raman spectroscopy for fat analysis by carrying out a systematic investigation of C-4-C-24 FAME. These provide a simple, well-characterized set of compounds in which the effect of making incremental changes can be studied over a wide range of chain lengths and degrees of unsaturation. The effect of temperature on the spectra was investigated over much larger ranges than would normally be encountered in real analytical measurements. It was found that for liquid FAME the best internal standard band was the carbonyl stretching vibration nu(C = O), whose position is affected by changes in sample chain length and physical state; in the samples studied here, it was found to lie between 1729 and 1748 cm(-1). Further, molar unsaturation could be correlated with the ratio of the nu(C = O) to either nu(C = C) or delta(H-C = ) with R-2 > 0.995. Chain length was correlated with the delta(CH2)(tw)/nu(C = O) ratio, (where "tw" indicates twisting) but separate plots for odd- and even-numbered carbon chains were necessary to obtain R-2 > 0.99 for liquid samples. Combining the odd- ani even-numbered carbon chain data in a single plot reduced the correlation to R-2 = 0.94-0.96, depending on the band ratios used. For molal unsaturation the band ratio that correlated linearly with unsaturation (R-2 > 0.99) was nu(C = C)/delta(CH2)(SC) (where "sc" indicates scissoring). Other band ratios show much more complex behavior with changes in chemical and physical structure. This complex behavior results from the fact that the bands do not arise from simple vibrations of small, discrete regions of the molecules but are due to complex motions of large sections of the FAME so that making incremental changes in structure does not necessarily lead to simple incremental changes in spectra.
Resumo:
Density functional calculations, using B3LPY/6-31G(d) methods, have been used to investigate the conformations and vibrational (Raman) spectra of a series of long-chain, saturated fatty acid methyl esters (FAMEs) with the formula CH2nO2 (n = 5-21) and two series of unsaturated FAMEs. The calculations showed that the lowest energy conformer within the saturated FAMEs is the simple (all-trans) structure and, in general, it was possible to reproduce experimental data using calculations on only the all-trans conformer. The only exception was C6H12O2, where a second low-lying conformer had to be included in order to correctly simulate the experimental Raman spectrum. The objective of the work was to provide theoretical justification for the methods that are commonly used to determine the properties of the fats and oils, such as chain length and degree of unsaturation, from experimental Raman data. Here it is shown that the calculations reproduce the trends and calibration curves that are found experimentally and also allow the reasons for the failure of what would appear to be rational measurements to be understood. This work shows that although the assumption that each FAME can simply be treated as a collection of functional groups can be justified in some cases, many of the vibrational modes are complex motions of large sections of the molecules and thus would not be expected to show simple linear trends with changes in structure, such as increasing chain length and/or unsaturation. Simple linear trends obtained from experimental data may thus arise from cancellation of opposing effects, rather than reflecting an underlying simplicity.
Resumo:
High-cadence, synchronized, multiwavelength optical observations of a solar active region (NOAA 10794) are presented. The data were obtained with the Dunn Solar Telescope at the National Solar Observatory/Sacramento Peak using a newly developed camera system: the rapid dual imager. Wavelet analysis is undertaken to search for intensity related oscillatory signatures, and periodicities ranging from 20 to 370 s are found with significance levels exceeding 95%. Observations in the H-α blue wing show more penumbral oscillatory phenomena when compared to simultaneous G-band observations. The H-α oscillations are interpreted as the signatures of plasma motions with a mean velocity of 20 km s-1. The strong oscillatory power over H-α blue-wing and G-band penumbral bright grains is an indication of the Evershed flow with frequencies higher than previously reported.
Resumo:
Rhodopsin, the light sensitive receptor responsible for blue-green vision, serves as a prototypical G protein-coupled receptor (GPCR). Upon light absorption, it undergoes a series of conformational changes that lead to the active form, metarhodopsin II (META II), initiating a signaling cascade through binding to the G protein transducin (G(t)). Here, we first develop a structural model of META II by applying experimental distance restraints to the structure of lumi-rhodopsin (LUMI), an earlier intermediate. The restraints are imposed by using a combination of biased molecular dynamics simulations and perturbations to an elastic network model. We characterize the motions of the transmembrane helices in the LUMI-to-META II transition and the rearrangement of interhelical hydrogen bonds. We then simulate rhodopsin activation in a dynamic model to study the path leading from LUMI to our META II model for wild-type rhodopsin and a series of mutants. The simulations show a strong correlation between the transition dynamics and the pharmacological phenotypes of the mutants. These results help identify the molecular mechanisms of activation in both wild type and mutant rhodopsin. While static models can provide insights into the mechanisms of ligand recognition and predict ligand affinity, a dynamic model of activation could be applicable to study the pharmacology of other GPCRs and their ligands, offering a key to predictions of basal activity and ligand efficacy.
Resumo:
Aims. We use magnetic and non-magnetic 3D numerical simulations of solar granulation and G-band radiative diagnostics from the resulting models to analyse the generation of small-scale vortex motions in the solar photosphere.
Methods. Radiative MHD simulations of magnetoconvection are used to produce photospheric models. Our starting point is a non-magnetic model of solar convection, where we introduce a uniform magnetic field and follow the evolution of the field in the simulated photosphere. We find two different types of photospheric vortices, and provide a link between the vorticity generation and the presence of the intergranular magnetic field. A detailed analysis of the vorticity equation, combined with the G-band radiative diagnostics, allows us to identify the sources and observational signatures of photospheric vorticity in the simulated photosphere.
Results. Two different types of photospheric vorticity, magnetic and non-magnetic, are generated in the domain. Non-magnetic vortices are generated by the baroclinic motions of the plasma in the photosphere, while magnetic vortices are produced by the magnetic tension in the intergranular magnetic flux concentrations. The two types of vortices have different shapes. We find that the vorticity is generated more efficiently in the magnetised model. Simulated G-band images show a direct connection between magnetic vortices and rotary motions of photospheric bright points, and suggest that there may be a connection between the magnetic bright point rotation and small-scale swirl motions observed higher in the atmosphere.
Resumo:
A molecular model for the P450 enzyme cytochrome P450 C17 (CYP17) is presented based on sequence alignments of multiple template structures and homology modeling. This enzyme plays a central role in the biosynthesis of testosterone and is emerging as a major target in prostate cancer, with the recently developed inhibitor abiraterone currently in advanced clinical trials. The model is described in detail, together with its validation, by providing structural explanations to available site-directed mutagenesis data. The CYP17 molecule in this model is in the form of a triangular prism, with an edge of similar to 55 angstrom and a thickness of similar to 37 angstrom. It is predominantly helical, comprising 13 alpha helices interspersed by six 3(10) helices and 11 beta-sheets. Multinanosecond molecular dynamics simulations in explicit solvent have been carried out, and principal components analysis has been used to reveal the details of dynamics around the active site. Coarse-grained methods have also been used to verify low-frequency motions, which have been correlated with active-site gating. The work also describes the results of docking synthetic inhibitors, including the drug abiraterone and the natural substrate pregnenolone, in the CYP17 active site together with molecular dynamics simulations on the complexes. (C) 2010 Elsevier Ltd. All rights reserved.