174 resultados para removal experiment
Resumo:
An experimental study on the adsorption of phosphate onto cost effective fine dolomite powder is presented. The effect of solution pH, solution ionic strength and adsorption isotherm were examined. The adsorption of phosphate was pH dependent and phosphate adsorption favoured acidic conditions. The adsorption was significantly influenced by solution ionic strength indicating outer-sphere complexation reactions. The experimental data further indicated that the removal of phosphate increased with increase in the ionic strength of solution. The experimental data were modelled with different isotherms: Langmuir, Freundlich and Redlich–Peterson isotherms. It was found that the Redlich–Peterson isotherm depicted the equilibrium data most accurately. The overall kinetic data fitted very well the pseudo-first-order rate model.
Resumo:
This paper presents the results of a real bridge field experiment in which damage was applied artificially to a steel truss bridge. The aim of this paper is to identify the dynamic parameters of this bridge using conventional techniques and investigate the effect of various damage conditions on those parameters. In the field experiment, acceleration measurements were recorded at a number of locations on the bridge deck. To excite the bridge, a two-axle van was driven across the bridge at constant speed. Dynamic parameters, such as the bridge mode shape, natural frequency and damping constant, are identified from the acceleration signals using existing techniques such as the fast Fourier transform, logarithmic decrement and frequency domain decomposition. The variation of these parameters under the influence of artificially applied damage conditions is investigated in order to evaluate their sensitivity to the bridge damage.
Resumo:
Colloidal gas aphron dispersions (CGAs) can be described as a system of microbubbles suspended homogenously in a liquid matrix. This work examines the performance of CGAs in comparison to surfactant solutions for washing low levels of arsenic from an iron rich soil. Sodium Dodecyl Sulfate (SDS) and saponin, a biodegradable surfactant, obtained from Sapindus mukorossi or soapnut fruit were used for generating CGAs and solutions for soil washing. Column washing experiments were performed in down-flow and up flow modes at a soil pH of 5 and 6 using varying concentration of SDS and soapnut solutions as well as CGAs. Soapnut CGAs removed more than 70% arsenic while SDS CGAs removed up to 55% arsenic from the soil columns in the soil pH range of 5–6. CGAs and solutions showed comparable performances in all the cases. CGAs were more economical since it contains 35% of air by volume, thereby requiring less surfactant. Micellar solubilization and low pH of soapnut facilitated arsenic desorption from soil column. FT-IR analysis of effluent suggested that soapnut solution did not interact chemically with arsenic thereby facilitating the recovery of soapnut solution by precipitating the arsenic. Damage to soil was minimal arsenic confirmed by metal dissolution from soil surface and SEM micrograph.
Resumo:
With most recent studies being focused on the development of
advanced chemical adsorbents, this paper investigates the possibility of
using two natural low-cost materials for selective adsorption. Multiadsorbent
systems containing tea waste and dolomite have been tested for
their effectiveness in the removal of copper and methylene blue from
aqueous solutions. The effects of contact time, solution pH and
adsorption isotherms on the sorption behaviour were investigated. The
Langmuir and Freundlich isotherms adequately described the adsorption of
copper ions and methylene blue by both materials in different systems.
The highest adsorption capacities for Cu and MB were calculated as 237.7
at pH 4.5 and 150.44 mg.g‒1 at pH 7 for DO and TW+DO respectively. Tea
waste (TW) and dolomite (DO) were characterized by Fourier transform
infrared spectroscopy, scanning electron microscopy and Energy dispersive
X-ray analysis. The removal of Cu and MB by dolomite was mainly via
surface complexation while physisorption was responsible for most of the
Cu and MB adsorption onto tea waste. Identifying the fundamental mechanisms and behaviour is key to the development of practical multi-adsorbent packed columns.
Resumo:
This work presents the possibility of optimising 3D Organised Mesoporous Silica (OMS) coated with both iron and aluminium oxides for the optimal removal of As(III) and As(V) from synthetic contaminated water. The materials developed were fully characterised and were tested for removing arsenic in batch experiments. The effect of total Al to Fe oxides coating on the selective removal of As(III) and As(V) was studied. It was shown that 8% metal coating was the optimal configuration for the coated OMS materials in removing arsenic. The effect of arsenic initial concentration and pH, kinetics and diffusion mechanisms was studied, modelled and discussed. It was shown that the advantage of an organised material over an un-structured sorbent was very limited in terms of kinetic and diffusion under the experimental conditions. It was shown that physisorption was the main adsorption process involved in As removal by the coated OMS. Maximum adsorption capacity of 55 mg As(V).g-1 was noticed at pH 5 for material coated with 8% Al oxides while 35 mg As(V).g-1 was removed at pH 4 for equivalent material coated with Fe oxides.
Resumo:
Objective: We explored whether readers can understand key messages without having to read the full review, and if there were differences in understanding between various types of summary.
Design: A randomised experiment of review summaries which compared understanding of a key outcome.
Participants: Members of university staff (n = 36).
Setting: Universities on the island of Ireland.
Method: The Cochrane Review chosen examines the health impacts of the use of electric fans during heat waves. Participants were asked their expectation of the effect these would have on mortality. They were then randomly assigned a summary of the review (i.e. abstract, plain language summary, podcast or podcast transcription) and asked to spend a short time reading/listening to the summary. After this they were again asked about the effects of electric fans on mortality and to indicate if they would want to read the full Review.
Main outcome measure: Correct identification of a key review outcome.
Results: Just over half (53%) of the participants identified its key message on mortality after engaging with their summary. The figures were 33% for the abstract group, 50% for both the plain language and transcript groups and 78% for the podcast group.
Conclusions: The differences between the groups were not statistically significant but suggest that the audio summary might improve knowledge transfer compared to written summaries. These findings should be explored further using a larger sample size and with other reviews.
Resumo:
This paper investigated the influence of three micro electrodischarge milling process parameters, which were feed rate, capacitance, and voltage. The response variables were average surface roughness (R a ), maximum peak-to-valley roughness height (R y ), tool wear ratio (TWR), and material removal rate (MRR). Statistical models of these output responses were developed using three-level full factorial design of experiment. The developed models were used for multiple-response optimization by desirability function approach to obtain minimum R a , R y , TWR, and maximum MRR. Maximum desirability was found to be 88%. The optimized values of R a , R y , TWR, and MRR were 0.04, 0.34 μm, 0.044, and 0.08 mg min−1, respectively for 4.79 μm s−1 feed rate, 0.1 nF capacitance, and 80 V voltage. Optimized machining parameters were used in verification experiments, where the responses were found very close to the predicted values.