155 resultados para multimedia security
Resumo:
To cope with the rapid growth of multimedia applications that requires dynamic levels of quality of service (QoS), cross-layer (CL) design, where multiple protocol layers are jointly combined, has been considered to provide diverse QoS provisions for mobile multimedia networks. However, there is a lack of a general mathematical framework to model such CL scheme in wireless networks with different types of multimedia classes. In this paper, to overcome this shortcoming, we therefore propose a novel CL design for integrated real-time/non-real-time traffic with strict preemptive priority via a finite-state Markov chain. The main strategy of the CL scheme is to design a Markov model by explicitly including adaptive modulation and coding at the physical layer, queuing at the data link layer, and the bursty nature of multimedia traffic classes at the application layer. Utilizing this Markov model, several important performance metrics in terms of packet loss rate, delay, and throughput are examined. In addition, our proposed framework is exploited in various multimedia applications, for example, the end-to-end real-time video streaming and CL optimization, which require the priority-based QoS adaptation for different applications. More importantly, the CL framework reveals important guidelines as to optimize the network performance
Resumo:
This letter proposes several relay selection policies for secure communication in cognitive decode-and-forward (DF) relay networks, where a pair of cognitive relays are opportunistically selected for security protection against eavesdropping. The first relay transmits the secrecy information to the destination,
and the second relay, as a friendly jammer, transmits the jamming signal to confound the eavesdropper. We present new exact closed-form expressions for the secrecy outage probability. Our analysis and simulation results strongly support our conclusion that the proposed relay selection policies can enhance the performance of secure cognitive radio. We also confirm that the error floor phenomenon is created in the absence of jamming.
Resumo:
Cognitive radio has emerged as an essential recipe for future high-capacity high-coverage multi-tier hierarchical networks. Securing data transmission in these networks is of utmost importance. In this paper, we consider the cognitive wiretap channel and propose multiple antennas to secure the transmission at the physical layer, where the eavesdropper overhears the transmission from the secondary transmitter to the secondary receiver. The secondary receiver and the eavesdropper are equipped with multiple antennas, and passive eavesdropping is considered where the channel state information of the eavesdropper’s channel is not available at the secondary transmitter. We present new closedform expressions for the exact and asymptotic secrecy outage probability. Our results reveal the impact of the primary network on the secondary network in the presence of a multi-antenna wiretap channel.
Resumo:
The 5G network infrastructure is driven by the evolution of today's most demanding applications. Already, multimedia applications such as on-demand HD video and IPTV require gigabit- per-second throughput and low delay, while future technologies include ultra HDTV and machine-to-machine communication. Mm-Wave technologies such as IEEE 802.15.3c and IEEE 802.11ad are ideal candidates to deliver high throughput to multiple users demanding differentiated QoS. Optimization is often used as a methodology to meet throughput and delay constraints. However, traditional optimization techniques are not suited to a mixed set of multimedia applications. Particle swarm optimization (PSO) is shown as a promising technique in this context. Channel-time allocation PSO (CTA-PSO) is successfully shown here to allocate resource even in scenarios where blockage of the 60 GHz signal poses significant challenges.
Resumo:
This paper critically interrogates how borders are produced by scientists, engineers and security experts in advance of the actual deployment of technical devices they develop. This paper explores the prior stages of translation and decision-making as a socio-technical device is conceived and developed. Drawing on in-depth interviews, observations and ethnographic research of the EU-funded Handhold project (consisting of nine teams in five countries), it explores how assumptions about the way security technologies will and should perform at the border shape the way that scientists, engineers, and security experts develop a portable, integrated device to detect CBRNE threats at borders. In disaggregating the moments of sovereign decision making across multiple sites and times, this paper questions the supposed linearity of how science comes out of and feeds back into the world of border security. An interrogation of competing assumptions and understandings of security threats and needs, of competing logics of innovation and pragmatism, of the demands of differentiated temporalities in detection and interrogation, and of the presumed capacities, behaviours, and needs of phantasmic competitors and end-users reveals a complex, circulating and co-constitutive process of device development that laboratises the border itself. We trace how sovereign decisions are enacted as assemblages in the antecedent register of device development itself through the everyday decisions of researchers in the laboratory, and the material components of the Handhold device itself.
Resumo:
Invited talk, representing the Royal Society
Resumo:
Cyber threats in Supervisory Control and Data Acquisition (SCADA) systems have the potential to render physical damage and jeopardize power system operation, safety and stability. SCADA systems were originally designed with little consideration of escalating cyber threats and hence the problem of how to develop robust intrusion detection technologies to tailor the requirements of SCADA is an emerging topic and a big challenge. This paper proposes a stateful Intrusion Detection System (IDS) using a Deep Packet Inspection (DPI) method to improve the cyber-security of SCADA systems using the IEC 60870-5-104 protocol which is tailored for basic telecontrol communications. The proposed stateful protocol analysis approach is presented that is designed specifically for the IEC 60870-5-104 protocol. Finally, the novel intrusion detection approach are implemented and validated.
Resumo:
Security is a critical concern around the world. Since resources for security are always limited, lots of interest have arisen in using game theory to handle security resource allocation problems. However, most of the existing work does not address adequately how a defender chooses his optimal strategy in a game with absent, inaccurate, uncertain, and even ambiguous strategy profiles' payoffs. To address this issue, we propose a general framework of security games under ambiguities based on Dempster-Shafer theory and the ambiguity aversion principle of minimax regret. Then, we reveal some properties of this framework. Also, we present two methods to reduce the influence of complete ignorance. Our investigation shows that this new framework is better in handling security resource allocation problems under ambiguities.
Resumo:
Experiences from smart grid cyber-security incidents in the past decade have raised questions on the applicability and effectiveness of security measures and protection mechanisms applied to the grid. In this chapter we focus on the security measures applied under real circumstances in today’s smart grid systems. Beginning from real world example implementations, we first review cyber-security facts that affected the electrical grid, from US blackout incidents, to the Dragonfly cyber-espionage campaign currently focusing on US and European energy firms. Provided a real world setting, we give information related to energy management of a smart grid looking also in the optimization techniques that power control engineers perform into the grid components. We examine the application of various security tools in smart grid systems, such as intrusion detection systems, smart meter authentication and key management using Physical Unclonable Functions, security analytics and resilient control algorithms. Furthermore we present evaluation use cases of security tools applied on smart grid infrastructure test-beds that could be proved important prior to their application in the real grid, describing a smart grid intrusion detection system application and security analytics results. Anticipated experimental results from the use-cases and conclusions about the successful transitions of security measures to real world smart grid operations will be presented at the end of this chapter.
Resumo:
African evangelical/Pentecostal/charismatic (EPC) Christians-previously dismissed by scholars as apolitical-are becoming increasingly active socially and politically. This chapter presents a case study of an EPC congregation in Harare. It demonstrates how the congregation provides short-term human security by responding to the needs of the poor, while at the same time creating space where people can develop the "self-expression values" necessary for long-term human security. The case study also demonstrates that even under authoritarian states, religious actors can actively choose to balance the immediate demands of short-term human security with the sometimes competing demands of long-term human security. Policymakers can benefit from a greater understanding of how religious actors strike this balance and from a greater appreciation of the variability, flexibility, and religious resources of EPC Christians in such contexts.
Resumo:
The proposition of increased innovation in network applications and reduced cost for network operators has won over the networking world to the vision of Software-Defined Networking (SDN). With the excitement of holistic visibility across the network and the ability to program network devices, developers have rushed to present a range of new SDN-compliant hardware, software and services. However, amidst this frenzy of activity, one key element has only recently entered the debate: Network Security. In this article, security in SDN is surveyed presenting both the research community and industry advances in this area. The challenges to securing the network from the persistent attacker are discussed and the holistic approach to the security architecture that is required for SDN is described. Future research directions that will be key to providing network security in SDN are identified.
Resumo:
The pull of Software-Defined Networking (SDN) is magnetic. There are few in the networking community who have escaped its impact. As the benefits of network visibility and network device programmability are discussed, the question could be asked as to who exactly will benefit? Will it be the network operator or will it, in fact, be the network intruder? As SDN devices and systems hit the market, security in SDN must be raised on the agenda. This paper presents a comprehensive survey of the research relating to security in software-defined networking that has been carried out to date. Both the security enhancements to be derived from using the SDN framework and the security challenges introduced by the framework are discussed. By categorizing the existing work, a set of conclusions and proposals for future research directions are presented.