191 resultados para intracellular membrane
Resumo:
The type VI secretion system (T6SS) contributes to the virulence of Burkholderia cenocepacia, an opportunistic pathogen causing serious chronic infections in patients with cystic fibrosis. BcsK(C) is a highly conserved protein among the T6SSs in Gram-negative bacteria. Here, we show that BcsK(C) is required for Hcp secretion and cytoskeletal redistribution in macrophages upon bacterial infection. These two phenotypes are associated with a functional T6SS in B. cenocepacia. Experiments employing a bacterial two-hybrid system and pulldown assays demonstrated that BcsK(C) interacts with BcsL(B), another conserved T6SS component. Internal deletions within BcsK(C) revealed that its N-terminal domain is necessary and sufficient for interaction with BcsL(B). Fractionation experiments showed that BcsK(C) can be in the cytosol or tightly associated with the outer membrane and that BcsK(C) and BcsL(B) form a high molecular weight complex anchored to the outer membrane that requires BcsF(H) (a ClpV homolog) to be assembled. Together, our data show that BcsK(C)/BcsL(B) interaction is essential for the T6SS activity in B. cenocepacia.
Resumo:
Wzx belongs to a family of membrane proteins involved in the translocation of isoprenoid lipid-linked glycans, which is loosely related to members of the major facilitator superfamily. Despite Wzx homologs performing a conserved function, it has been difficult to pinpoint specific motifs of functional significance in their amino acid sequences. Here, we elucidate the topology of the Escherichia coli O157 Wzx (Wzx(EcO157)) by a combination of bioinformatics and substituted cysteine scanning mutagenesis, as well as targeted deletion-fusions to green fluorescent protein and alkaline phosphatase. We conclude that Wzx(EcO157) consists of 12 transmembrane (TM) helices and six periplasmic and five cytosolic loops, with N and C termini facing the cytoplasm. Four TM helices (II, IV, X, and XI) contain polar residues (aspartic acid or lysine), and they may form part of a relatively hydrophilic core. Thirty-five amino acid replacements to alanine or serine were targeted to five native cysteines and most of the aspartic acid, arginine, and lysine residues. From these, only replacements of aspartic acid-85, aspartic acid-326, arginine-298, and lysine-419 resulted in a protein unable to support O-antigen production. Aspartic acid-85 and lysine-419 are located in TM helices II and XI, while arginine-298 and aspartic acid-326 are located in periplasmic and cytosolic loops 4, respectively. Further analysis revealed that the charge at these positions is required for Wzx function since conservative substitutions maintaining the same charge polarity resulted in a functional protein, whereas those reversing or eliminating polarity abolished function. We propose that the functional requirement of charged residues at both sides of the membrane and in two TM helices could be important to allow the passage of the Und-PP-linked saccharide substrate across the membrane.
Resumo:
Burkholderia cenocepacia is an opportunistic pathogen that survives intracellularly in macrophages and causes serious respiratory infections in patients with cystic fibrosis. We have previously shown that bacterial survival occurs in bacteria-containing membrane vacuoles (BcCVs) resembling arrested autophagosomes. Intracellular bacteria stimulate IL-1ß secretion in a caspase-1-dependent manner and induce dramatic changes to the actin cytoskeleton and the assembly of the NADPH oxidase complex onto the BcCV membrane. A Type 6 secretion system (T6SS) is required for these phenotypes but surprisingly it is not required for the maturation arrest of the BcCV. Here, we show that macrophages infected with B. cenocepacia employ the NLRP3 inflammasome to induce IL-1ß secretion and pyroptosis. Moreover, IL-1ß secretion by B. cenocepacia-infected macrophages is suppressed in deletion mutants unable to produce functional Type VI, Type IV, and Type 2 secretion systems (SS). We provide evidence that the T6SS mediates the disruption of the BcCV membrane, which allows the escape of proteins secreted by the T2SS into the macrophage cytoplasm. This was demonstrated by the activity of fusion derivatives of the T2SS-secreted metalloproteases ZmpA and ZmpB with adenylcyclase. Supporting this notion, ZmpA and ZmpB are required for efficient IL-1ß secretion in a T6SS dependent manner. ZmpA and ZmpB are also required for the maturation arrest of the BcCVs and bacterial intra-macrophage survival in a T6SS-independent fashion. Our results uncover a novel mechanism for inflammasome activation that involves cooperation between two bacterial secretory pathways, and an unanticipated role for T2SS-secreted proteins in intracellular bacterial survival.
Resumo:
Computer-assisted topology predictions are widely used to build low-resolution structural models of integral membrane proteins (IMPs). Experimental validation of these models by traditional methods is labor intensive and requires modifications that might alter the IMP native conformation. This work employs oxidative labeling coupled with mass spectrometry (MS) as a validation tool for computer-generated topology models. ·OH exposure introduces oxidative modifications in solvent-accessible regions, whereas buried segments (e.g., transmembrane helices) are non-oxidizable. The Escherichia coli protein WaaL (O-antigen ligase) is predicted to have 12 transmembrane helices and a large extramembrane domain (Pérez et al., Mol. Microbiol. 2008, 70, 1424). Tryptic digestion and LC-MS/MS were used to map the oxidative labeling behavior of WaaL. Met and Cys exhibit high intrinsic reactivities with ·OH, making them sensitive probes for solvent accessibility assays. Overall, the oxidation pattern of these residues is consistent with the originally proposed WaaL topology. One residue (M151), however, undergoes partial oxidation despite being predicted to reside within a transmembrane helix. Using an improved computer algorithm, a slightly modified topology model was generated that places M151 closer to the membrane interface. On the basis of the labeling data, it is concluded that the refined model more accurately reflects the actual topology of WaaL. We propose that the combination of oxidative labeling and MS represents a useful strategy for assessing the accuracy of IMP topology predictions, supplementing data obtained in traditional biochemical assays. In the future, it might be possible to incorporate oxidative labeling data directly as constraints in topology prediction algorithms.
Resumo:
Burkholderia cenocepacia is a multidrug-resistant opportunistic pathogen that infects the airways of patients with cystic fibrosis (CF) and can survive intracellularly in macrophages and epithelial cells. The gentamicin protection assay, which relies on the poor ability of gentamicin or other aminoglycosides to permeate eukaryotic cell membranes, is traditionally employed to quantify intracellular bacteria. However, the high resistance of these bacteria to aminoglycosides hampers the use of the gentamicin protection assay to investigate intracellular infection by B. cenocepacia. Here, we report the construction of gentamicin-sensitive strains of B. cenocepacia carrying a deletion of the BCAL1674, BCAL1675, and BCAL1676 genes that form an operon encoding an AmrAB-OprA-like efflux pump. We show that bacteria carrying this deletion are hypersensitive to gentamicin and also delay phagolysosomal fusion upon infection of RAW 264.7 murine macrophages, as previously demonstrated for the parental strain. We also demonstrate for the first time that low concentrations of gentamicin can be used to effectively kill extracellular bacteria and reliably quantify the intracellular infection by B. cenocepacia, which can replicate in RAW 264.7 macrophages.
Resumo:
Burkholderia cenocepacia causes chronic lung infections in patients suffering from cystic fibrosis and chronic granulomatous disease. We have previously shown that B. cenocepacia survives intracellularly in macrophages within a membrane vacuole (BcCV) that delays acidification. Here, we report that after macrophage infection with live B. cenocepacia there is a approximately 6 h delay in the association of NADPH oxidase with BcCVs, while heat-inactivated bacteria are normally trafficked into NADPH oxidase-positive vacuoles. BcCVs in macrophages treated with a functional inhibitor of the cystic fibrosis transmembrane conductance regulator exhibited a further delay in the assembly of the NADPH oxidase complex at the BcCV membrane, but the inhibitor did not affect NADPH oxidase complex assembly onto vacuoles containing heat-inactivated B. cenocepacia or live Escherichia coli. Macrophages produced less superoxide following B. cenocepacia infection as compared to heat-inactivated B. cenocepacia and E. coli controls. Reduced superoxide production was associated with delayed deposition of cerium perhydroxide precipitates around BcCVs of macrophages infected with live B. cenocepacia, as visualized by transmission electron microscopy. Together, our results demonstrate that intracellular B. cenocepacia resides in macrophage vacuoles displaying an altered recruitment of the NADPH oxidase complex at the phagosomal membrane. This phenomenon may contribute to preventing the efficient clearance of this opportunistic pathogen from the infected airways of susceptible patients.
Resumo:
The Burkholderia cepacia complex (Bcc) is a group of opportunistic bacteria chronically infecting the airways of patients with cystic fibrosis (CF). Several laboratories have shown that Bcc members, in particular B. cenocepacia, survive within a membrane-bound vacuole inside phagocytic and epithelial cells. We have previously demonstrated that intracellular B. cenocepacia causes a delay in phagosomal maturation, as revealed by impaired acidification and slow accumulation of the late phagolysosomal marker LAMP-1. In this study, we demonstrate that uninfected cystic fibrosis transmembrane conductance regulator (CFTR)-defective macrophages or normal macrophages treated with a CFTR-specific drug inhibitor display normal acidification. However, after ingestion of B. cenocepacia, acidification and phagolysosomal fusion of the bacteria-containing vacuoles occur in a lower percentage of CFTR-negative macrophages than CFTR-positive cells, suggesting that loss of CFTR function contributes to enhance bacterial intracellular survival. The CFTR-associated phagosomal maturation defect was absent in macrophages exposed to heat-inactivated B. cenocepacia and macrophages infected with a non-CF pathogen such as Salmonella enterica, an intracellular pathogen that once internalized rapidly traffics to acidic compartments that acquire lysosomal markers. These results suggest that not only a defective CFTR but also viable B. cenocepacia are required for the altered trafficking phenotype. We conclude that CFTR may play a role in the mechanism of clearance of the intracellular infection, as we have shown before that B. cenocepacia cells localized to the lysosome lose cell envelope integrity. Therefore, the prolonged maturation arrest of the vacuoles containing B. cenocepacia within cftr(-/-) macrophages could be a contributing factor in the persistence of the bacteria within CF patients.
Resumo:
Burkholderia cenocepacia is an opportunistic pathogen causing serious infections in patients with cystic fibrosis. The widespread distribution of this bacterium in the environment suggests that it must adapt to stress to be able to survive. We identified in B. cenocepacia K56-2 a gene predicted to encode RpoE, the extra-cytoplasmic stress response regulator. The rpoE gene is the first gene of a predicted operon encoding proteins homologous to RseA, RseB, MucD and a protein of unknown function. The genomic organization and the co-transcription of these genes were confirmed by PCR and RT-PCR. The mucD and rpoE genes were mutated, giving rise to B. cenocepacia RSF24 and RSF25, respectively. While mutant RSF24 did not demonstrate any growth defects under the conditions tested, RSF25 was compromised for growth under temperature (44 degrees C) and osmotic stress (426 mM NaCl). Expression of RpoE in trans could complement the osmotic growth defect but exacerbated temperature sensitivity in both RSF25 and wild-type K56-2. Inactivation of rpoE altered the bacterial cell surface, as indicated by increased binding of the fluorescent dye calcofluor white and by an altered outer-membrane protein profile. These cell surface changes were restored by complementation with a plasmid encoding rpoE. Macrophage infections in which bacterial colocalization with fluorescent dextran was examined demonstrated that the rpoE mutant could not delay the fusion of B. cenocepacia-containing vacuoles with lysosomes, in contrast to the parental strain K56-2. These data show that B. cenocepacia rpoE is required for bacterial growth under certain stress conditions and for the ability of intracellular bacteria to delay phagolysosomal fusion in macrophages.
Resumo:
Chronic respiratory infections by Burkholderia cenocepacia in cystic fibrosis patients are associated with increased morbidity and mortality, but virulence factors determining the persistence of the infection in the airways are not well characterized. Using a chronic pulmonary infection model, we previously identified an attenuated mutant with an insertion in a gene encoding an RpoN activator protein, suggesting that RpoN and/or components of the RpoN regulon play a role in B. cenocepacia virulence. In this study, we demonstrate that a functional rpoN gene is required for bacterial motility and biofilm formation in B. cenocepacia K56-2. Unlike other bacteria, RpoN does not control flagellar biosynthesis, as evidenced by the presence of flagella in the rpoN mutant. We also demonstrate that, in macrophages, the rpoN mutant is rapidly trafficked to lysosomes while intracellular wild-type B. cenocepacia localizes in bacterium-containing vacuoles that exhibit a pronounced delay in phagolysosomal fusion. Rapid trafficking to the lysosomes is also associated with the release of red fluorescent protein into the vacuolar lumen, indicating loss of bacterial cell envelope integrity. Although a role for RpoN in motility and biofilm formation has been previously established, this study is the first demonstration that the RpoN regulon in B. cenocepacia is involved in delaying phagolysosomal fusion, thereby prolonging bacterial intracellular survival within macrophages.
Resumo:
Burkholderia cenocepacia is a gram-negative, non-spore-forming bacillus and a member of the Burkholderia cepacia complex. B. cenocepacia can survive intracellularly in phagocytic cells and can produce at least one superoxide dismutase (SOD). The inability of O2- to cross the cytoplasmic membrane, coupled with the periplasmic location of Cu,ZnSODs, suggests that periplasmic SODs protect bacteria from superoxide that has an exogenous origin (for example, when cells are faced with reactive oxygen intermediates generated by host cells in response to infection). In this study, we identified the sodC gene encoding a Cu,ZnSOD in B. cenocepacia and demonstrated that a sodC null mutant was not sensitive to a H2O2, 3-morpholinosydnonimine, or paraquat challenge but was killed by exogenous superoxide generated by the xanthine/xanthine oxidase method. The sodC mutant also exhibited a growth defect in liquid medium compared to the parental strain, which could be complemented in trans. The mutant was killed more rapidly than the parental strain was killed in murine macrophage-like cell line RAW 264.7, but killing was eliminated when macrophages were treated with an NADPH oxidase inhibitor. We also confirmed that SodC is periplasmic and identified the metal cofactor. B. cenocepacia SodC was resistant to inhibition by H2O2 and was unusually resistant to KCN for a Cu,ZnSOD. Together, these observations establish that B. cenocepacia produces a periplasmic Cu,ZnSOD that protects this bacterium from exogenously generated O2- and contributes to intracellular survival of this bacterium in macrophages.
Resumo:
Chronic lung infection by opportunistic pathogens, such as Pseudomonas aeruginosa and members of the Burkholderia cepacia complex, is a major cause of morbidity and mortality in patients with cystic fibrosis. Outer membrane proteins (OMPs) of gram-negative bacteria are promising vaccine antigen candidates. In this study, we evaluated the immunogenicity, protection, and cross-protection conferred by intranasal vaccination of mice with OMPs from B. multivorans plus the mucosal adjuvant adamantylamide dipeptide (AdDP). Robust mucosal and systemic immune responses were stimulated by vaccination of naive animals with OMPs from B. multivorans and B. cenocepacia plus AdDP. Using a mouse model of chronic pulmonary infection, we observed enhanced clearance of B. multivorans from the lungs of vaccinated animals, which correlated with OMP-specific secretory immunoglobulin A responses. Furthermore, OMP-immunized mice showed rapid resolution of the pulmonary infection with virtually no lung pathology after bacterial challenge with B. multivorans. In addition, we demonstrated that administration of B. multivorans OMP vaccine conferred protection against B. cenocepacia challenge in this mouse infection model, suggesting that OMPs provide cross-protection against the B. cepacia complex. Therefore, we concluded that mucosal immunity to B. multivorans elicited by intranasal vaccination with OMPs plus AdDP could prevent early steps of colonization and infection with B. multivorans and also ameliorate lung tissue damage, while eliciting cross-protection against B. cenocepacia. These results support the notion that therapies leading to increased mucosal immunity in the airways may help patients with cystic fibrosis.
Resumo:
WecA is an integral membrane protein that initiates the biosynthesis of enterobacterial common antigen and O-antigen lipopolysaccharide (LPS) by catalyzing the transfer of N-acetylglucosamine (GlcNAc)-1-phosphate onto undecaprenyl phosphate (Und-P) to form Und-P-P-GlcNAc. WecA belongs to a large family of eukaryotic and prokaryotic prenyl sugar transferases. Conserved aspartic acids in putative cytoplasmic loops 2 (Asp90 and Asp91) and 3 (Asp156 and Asp159) were targeted for replacement mutagenesis with either glutamic acid or asparagine. We examined the ability of each mutant protein to complement O-antigen LPS synthesis in a wecA-deficient strain and also determined the steady-state kinetic parameters of the mutant proteins in an in vitro transfer assay. Apparent K(m) and V(max) values for UDP-GlcNAc, Mg(2+), and Mn(2+) suggest that Asp156 is required for catalysis, while Asp91 appears to interact preferentially with Mg(2+), possibly playing a role in orienting the substrates. Topological analysis using the substituted cysteine accessibility method demonstrated the cytosolic location of Asp90, Asp91, and Asp156 and provided a more refined overall topological map of WecA. Also, we show that cells expressing a WecA derivative C terminally fused with the green fluorescent protein exhibited a punctate distribution of fluorescence on the bacterial surface, suggesting that WecA localizes to discrete regions in the bacterial plasma membrane.
Resumo:
N-linked glycosylation of proteins in eukaryotic cells follows a highly conserved pathway. The tetradecasaccharide substrate (Glc3Man9GlcNAc2) is first assembled at the membrane of the endoplasmic reticulum (ER) as a dolichylpyrophosphate (Dol-PP)-linked intermediate, and then transferred to nascent polypeptide chains in the lumen of the ER. The assembly of the oligosaccharide starts on the cytoplasmic side of the ER membrane with the synthesis of a Man5GlcNAc2-PP-Dol intermediate. This lipid-linked intermediate is then translocated across the membrane so that the oligosaccharides face the lumen of the ER, where the biosynthesis of Glc3Man9GlcNAc2-PP-Dol continues to completion. The fully assembled oligosaccharide is transferred to selected asparagine residues of target proteins. The transmembrane movement of lipid-linked Man5GlcNAc2 oligosaccharide is of fundamental importance in this biosynthetic pathway, and similar processes involving phospholipids and glycolipids are essential in all types of cells. The process is predicted to be catalysed by proteins, termed flippases, which to date have remained elusive. Here we provide evidence that yeast RFT1 encodes an evolutionarily conserved protein required for the translocation of Man5GlcNAc2-PP-Dol from the cytoplasmic to the lumenal leaflet of the ER membrane.
Resumo:
The correct site for translation initiation for Escherichia coli WecA (Rfe), presumably involved in catalyzing the transfer of N-acetylglucosamine 1-phosphate to undecaprenylphosphate, was determined by using its FLAG-tagged derivatives. The N-terminal region containing three predicted transmembrane helices was found to be necessary for function but not for membrane localization of this protein.