132 resultados para intestinal absorption
Resumo:
Whey protein has been indicated to curb diet-induced obesity, glucose intolerance and delay the onset of type 2 diabetes mellitus. Here the effects of intact crude whey, intact individual whey proteins and beta-lactoglobulin hydrolysates on an enteroendocrine (EE) cell model were examined. STC-1 pGIP/neo cells were incubated with several concentrations of yogurt whey (YW), cheese whey (CW), beta-lactoglobulin (BLG), alpha-lactalbumin (ALA) and bovine serum albumin (BSA). The findings demonstrate that BLG stimulates EE cell proliferation, and also GLP-1 secretion (an effect which is lost following hydrolysis with chymotrypsin or trypsin). ALA is a highly potent GLP-1 secretagogue which also increases the intracellular levels of GLP-1. Conversely, whey proteins and hydrolysates had little impact on GIP secretion. This appears to be the first investigation of the effects of the three major proteins of YW and CW on EE cells. The anti-diabetic potential of whey proteins should be further investigated.
Resumo:
The structure and properties of the diffuse interstellar medium (ISM) on small scales, sub-au to 1 pc, are poorly understood. We compare interstellar absorption-lines, observed towards a selection of O- and B-type stars at two or more epochs, to search for variations over time caused by the transverse motion of each star combined with changes in the structure in the foreground ISM. Two sets of data were used: 83 VLT- UVES spectra with approximately 6 yr between epochs and 21 McDonald observatory 2.7m telescope echelle spectra with 6 - 20 yr between epochs, over a range of scales from 0 - 360 au. The interstellar absorption-lines observed at the two epochs were subtracted and searched for any residuals due to changes in the foreground ISM. Of the 104 sightlines investigated with typically five or more components in Na I D, possible temporal variation was identified in five UVES spectra (six components), in Ca II, Ca I and/or Na I absorption-lines. The variations detected range from 7\% to a factor of 3.6 in column density. No variation was found in any other interstellar species. Most sightlines show no variation, with 3{\sigma} upper limits to changes of the order 0.1 - 0.3 dex in Ca II and Na I. These variations observed imply that fine-scale structure is present in the ISM, but at the resolution available in this study, is not very common at visible wavelengths. A determination of the electron densities and lower limits to the total number density of a sample of the sightlines implies that there is no striking difference between these parameters in sightlines with, and sightlines without, varying components.
Resumo:
Intestinal smooth muscle contracts rhythmically in the absence of nerve and hormonal stimulation because of the activity of pacemaker cells between and within the muscle layers. This means that the autonomic nervous system modifies rather than initiates intestinal contractions. The practical described here gives students an opportunity to observe this spontaneous activity and its modification by agents associated with parasympathetic and sympathetic nerve activity. A section of the rabbit small intestine is suspended in an organ bath, and the use of a pressure transducer and data-acquisition software allows the measurement of tension generated by the smooth muscle of intestinal walls. The application of the parasympathetic neurotransmitter ACh at varying concentrations allows students to observe an increase in intestinal smooth muscle tone with increasing concentrations of this muscarinic receptor agonist. Construction of a concentration-effect curve allows students to calculate an EC50 value for ACh and consider some basic concepts surrounding receptor occupancy and activation. Application of the hormone epinephrine to the precontracted intestine allows students to observe the inhibitory effects associated with sympathetic nerve activation. Introduction of the drug atropine to the preparation before a maximal concentration of ACh is applied allows students to observe the inhibitory effect of a competitive antagonist on the physiological response to a receptor agonist. The final experiment involves the observation of the depolarizing effect of K+ on smooth muscle. Students are also invited to consider why the drugs atropine, codeine, loperamide, and botulinum toxin have medicinal uses in the management of gastrointestinal problems.
Resumo:
BACKGROUND: Detection of pre-neoplastic gastric mucosal changes and early gastric cancer (EGC) by white-light endoscopy (WLE) is often difficult. In this study we investigated whether combined autofluorescence imaging (AFI) and narrow band imaging (NBI) can improve detection of pre-neoplastic lesions and early gastric cancer in high-risk patients.
PATIENTS AND METHODS: Chinese patients who were 50-years-old or above with dyspepsia were examined by both high-resolution WLE and combined AFI followed by NBI (AFI-NBI), consecutively in a prospective randomized cross-over setting, by two experienced endoscopists. The primary outcome was diagnostic ability of the two methods for patients with pre-neoplastic lesions such as intestinal metaplasia (IM) and mucosal atrophy.
RESULTS: Sixty-five patients were recruited. One patient with large advanced gastric cancer was found and excluded from the analysis. Among the remaining 64 patients, 38 (59%) had IM; of these, 26 (68%) were correctly identified by AFI-NBI (sensitivity 68%, specificity 23%) and only 13 (34%) by WLE (sensitivity 34%, specificity 65%). AFI-NBI detected more patients with IM than did WLE (p=0.011). Thirty-one patients (48%) had mucosal atrophy. Ten patients (32%) were identified by AFI-NBI (sensitivity 32%, specificity 79%) and four patients (13%) by WLE (sensitivity 13%, specificity 88%) (p=0.100). No dysplasia or EGC was found.
CONCLUSION: AFI-NBI identified significantly more patients with IM than did WLE. Our result warrants further studies to define the role of combined AFI-NBI endoscopy for detection of precancerous conditions.
Resumo:
Pulpal innervation is not exclusively sensory and there are potential roles for other neuropeptides such as vasoactive intestinal polypeptide (VIP) in pulpal health and disease. In the systemic circulation VIP relaxes vascular smooth muscles leading to vasodilatation. It has been shown that VIP fibres are associated with pulpal blood vessels and therefore VIP may mediate vasoactivity in the dental pulp. A growing body of evidence has now demonstrated that an additional major physiological role of VIP is to act as a survival factor. In order to gain a better understanding of the role of neuropeptides in the caries process it is of interest to specifically examine a role for VIP. Objectives: The aim of the present study was to determine the levels of VIP in carious (moderately carious and grossly carious) compared with non-carious teeth. Methods: A total of 68 teeth were included in the study (22 non-carious, 20 moderately carious and 26 grossly carious). VIP was measured in all samples using a sensitive and specific radioimmunoassay. Results: The mean concentration of VIP in the pulps of non-carious teeth was 7.69 ng/g (9.41 SD) compared to 14.93 ng/g (15.58 SD) in carious teeth. Pair-wise comparisons of VIP levels using Tukey’s test showed statistically significant differences in VIP expression between non-carious and moderately carious teeth (p=0.002) and between moderately and grossly carious teeth, (p=0.002). Conclusion: The significantly increased levels of VIP in moderately carious pulps compared with either non-carious or grossly carious pulps may suggest a role for VIP as a protective or survival factor.
Resumo:
Recently, new lines of yellow-seeded (CS-Y) and black-seeded canola (CS-B) have been developed with chemical and structural alteration through modern breeding technology. However, no systematic study was found on the bioactive compounds, chemical functional groups, fatty acid profiles, inherent structure, nutrient degradation and absorption, or metabolic characteristics between the newly developed yellow- and black-seeded canola lines. This study aimed to systematically characterize chemical, structural, and nutritional features in these canola lines. The parameters accessed include bioactive compounds and antinutrition factors, chemical functional groups, detailed chemical and nutrient profiles, energy value, nutrient fractions, protein structure, degradation kinetics, intestinal digestion, true intestinal protein supply, and feed milk value. The results showed that the CS-Y line was lower (P ≤ 0.05) in neutral detergent fiber (122 vs 154 g/kg DM), acid detergent fiber (61 vs 99 g/kg DM), lignin (58 vs 77 g/kg DM), nonprotein nitrogen (56 vs 68 g/kg DM), and acid detergent insoluble protein (11 vs 35 g/kg DM) than the CS-B line. There was no difference in fatty acid profiles except C20:1 eicosenoic acid content (omega-9) which was in lower in the CS-Y line (P < 0.05) compared to the CS-B line. The glucosinolate compounds differed (P < 0.05) in terms of 4-pentenyl, phenylethyl, 3-CH3-indolyl, and 3-butenyl glucosinolates (2.9 vs 1.0 μmol/g) between the CS-Y and CS-B lines. For bioactive compounds, total polyphenols tended to be different (6.3 vs 7.2 g/kg DM), but there were no differences in erucic acid and condensed tannins with averages of 0.3 and 3.1 g/kg DM, respectively. When protein was portioned into five subfractions, significant differences were found in PA, PB1 (65 vs 79 g/kg CP), PB2, and PC fractions (10 vs 33 g/kg CP), indicating protein degradation and supply to small intestine differed between two new lines. In terms of protein structure spectral profile, there were no significant differences in functional groups of amides I and II, α helix, and β-sheet structure as well as their ratio between the two new lines, indicating no difference in protein structure makeup and conformation between the two lines. In terms of energy values, there were significant differences in total digestible nutrient (TDN; 149 vs 133 g/kg DM), metabolizable energy (ME; 58 vs 52 MJ/kg DM), and net energy for lactation (NEL; 42 vs 37 MJ/kg DM) between CS-Y and CS-B lines. For in situ rumen degradation kinetics, the two lines differed in soluble fraction (S; 284 vs 341 g/kg CP), potential degradation fraction (D; 672 vs 590 g/kg CP), and effective degraded organic matter (EDOM; 710 vs 684 g/kg OM), but no difference in degradation rate. CS-Y had higher digestibility of rumen bypass protein in the intestine than CS-B (566 vs 446 g/kg of RUP, P < 0.05). Modeling nutrient supply results showed that microbial protein synthesis (MCP; 148 vs 171 g/kg DM) and rumen protein degraded balance (DPB; 108 vs 127 g/kg DM) were lower in the CS-Y line, but there were no differences in total truly digested protein in small intestine (DVE) and feed milk value (FMV) between the two lines. In conclusion, the new yellow line had different nutritional, chemical, and structural features compared to the black line. CS-Y provided better nutrient utilization and availability.
Resumo:
A relatively simple, selective, precise and accurate high performance liquid chromatography (HPLC) method based on a reaction of phenylisothiocyanate (PITC) with glucosamine (GL) in alkaline media was developed and validated to determine glucosamine hydrochloride permeating through human skin in vitro. It is usually problematic to develop an accurate assay for chemicals traversing skin because the excellent barrier properties of the tissue ensure that only low amounts of the material pass through the membrane and skin components may leach out of the tissue to interfere with the analysis. In addition, in the case of glucosamine hydrochloride, chemical instability adds further complexity to assay development. The assay, utilising the PITC-GL reaction was refined by optimizing the reaction temperature, reaction time and PITC concentration. The reaction produces a phenylthiocarbamyl-glucosamine (PTC-GL) adduct which was separated on a reverse-phase (RP) column packed with 5 microm ODS (C18) Hypersil particles using a diode array detector (DAD) at 245 nm. The mobile phase was methanol-water-glacial acetic acid (10:89.96:0.04 v/v/v, pH 3.5) delivered to the column at 1 ml min-1 and the column temperature was maintained at 30 degrees C. Galactosamine hydrochloride (Gal-HCl) was used as an internal standard. Using a saturated aqueous solution of glucosamine hydrochloride, in vitro permeation studies were performed at 32+/-1 degrees C over 48 h using human epidermal membranes prepared by a heat separation method and mounted in Franz-type diffusion cells with a diffusional area 2.15+/-0.1 cm2. The optimum derivatisation reaction conditions for reaction temperature, reaction time and PITC concentration were found to be 80 degrees C, 30 min and 1% v/v, respectively. PTC-Gal and GL adducts eluted at 8.9 and 9.7 min, respectively. The detector response was found to be linear in the concentration range 0-1000 microg ml-1. The assay was robust with intra- and inter-day precisions (described as a percentage of relative standard deviation, %R.S.D.) <12. Intra- and inter-day accuracy (as a percentage of the relative error, %RE) was <or=-5.60 and <or=-8.00, respectively. Using this assay, it was found that GL-HCl permeates through human skin with a flux 1.497+/-0.42 microg cm-2 h-1, a permeability coefficient of 5.66+/-1.6x10(-6) cm h-1 and with a lag time of 10.9+/-4.6 h.