141 resultados para inhibition of HA formation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finite element modeling of the formation of pre-loaded damage in cement mantles of orthopaedic joint replacements was presented. The existence of cracking suggested a high level of residual stress. The direction of maximum principal stress vectors corresponded well with the observed crack orientation. Results suggested that cracking depends upon a combination of residual stress, porosity and temperature rise during polymerization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nucleolus is an important region of the nucleus that acts as the main site of rRNA transcription by RNA polymerase I (Pol-I), and one of the most prominent morphological markers of proliferative and invasive cancers is increased nucleolar size. Increases in Pol-I transcription leads to increased levels of ribosome biogenesis that are able to fuel rapid cell growth and proliferation due to increased ribosome numbers. Therefore Pol-I transcription seems a viable target for the development of anticancer therapeutics as abrogation of Pol-I transcription leads to cessation of cell growth and eventual cell death. We have confirmed that ellipticine compound, 9-Hydroxyellipticine (9HE), is an efficient inhibitor of Pol-I transcription in vitro and in p53+/+ and -/- cell lines in vivo. Short-term treatments (≤24 h) with micromolar concentrations of 9HE leads to decreased cell viability and proliferation, and leads to activation of caspases 3, 8 and 9, indicating that both intrinsic and extrinsic cell death mechanisms are activated upon Pol-I inhibition. Reactive oxygen species levels were also studied following short and long term treatments with 9HE and there was a 2/3-fold increase in cellular ROS levels. Long-term 9HE treatment (≥24 h) leads to cellular senescence as indicated by increased cellular morphology and senescence associated β-galactosidase staining, and this senescence is not accompanied by induction of autophagy. Following 24 h treatment there is also accumulation of cells in the G0/G1 phase of the cell cycle and qPCR analysis of cell cycle regulators shows down-regulation of G1/S transition associated cyclins. These data show that Pol-I transcription is a viable target for the development of novel chemotherapeutics, although further delineation of the cell death pathways remains. To further elucidate the mechanism, the role of mitochondrial death signals will be investigated by determination of cytochrome c release and regulation of Bcl2 family member proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epithelial ovarian carcinoma (EOC) is characterised by late diagnosis and recurrences, both of which contribute to the high morbidity and mortality of this cancer. Unfortunately, EOC has an innate susceptibility to become chemo-resistant. Specifically, up to 30% of patients may not respond to current standard chemotherapy (paclitaxel and platinum in combination) and of those who have an initial response, some patients relapse within a few months. Therefore, in order to improve patient outcome it is crucial to establish what factors influence a patients' individualised response to chemotherapy. We analysed MAD2 protein expression in a patient cohort of 35 ovarian tumours and a panel of 5 ovarian cancer cell lines. We have demonstrated that low nuclear MAD2 expression intensity was significantly associated with chemo-resistant ovarian tumours (p=0.0136). Moreover, in vitro studies of the 5 ovarian cancer cell lines revealed that reduced MAD2 expression was associated with paclitaxel resistance. In silico analysis identified a putative miR-433 binding domain in the MAD2 3′UTR and expression profiling of miR-433 in the ovarian cancer cell lines showed that low MAD2 protein expression was associated with high miR-433 levels. In vitro over-expression of miR-433 attenuated MAD2 protein expression with a concomitant increase in cellular resistance to paclitaxel. Over-expression of a morpholino oligonucleotide that blocks miR-433 binding to MAD2 3′UTR stabilised MAD2 protein expression and protects from miR-433 induced degradation. Furthermore, miR-433 expression analysis in 35 ovarian tumour samples revealed that high miR-433 expression was associated with advanced stage presentations (p=0.0236). In conclusion, ovarian tumours that display low nuclear MAD2 intensity are chemo-resistant and stabilising MAD2 expression by antagonising miR-433 activity is a potential mechanism for restoring chemo-responsiveness in these tumours.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Features of chip formation can inform the mechanism of a machining process. In this paper, a series of orthogonal cutting experiments were carried out on unidirectional carbon fiber reinforced polymer (UD-CFRP) under cutting speed of 0.5 m/min. The specially designed orthogonal cutting tools and high-speed camera were used in this paper. Two main factors are found to influence the chip morphology, namely the depth of cut (DOC) and the fiber orientation (angle ), and the latter of which plays a more dominant role. Based on the investigation of chip formation, a new approach is proposed for predicting fracture toughness of the newly machined surface and the total energy consumption during CFRP orthogonal cutting is introduced as a function of the surface energy of machined surface, the energy consumed to overcome friction, and the energy for chip fracture. The results show that the proportion of energy spent on tool-chip friction is the greatest, and the proportions of energy spent on creating new surface decrease with the increasing of fiber angle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Wilms tumor suppressor WT1 encodes a zinc finger transcription factor that is expressed in glomerular podocytes during a narrow window in kidney development. By immunoprecipitation and protein microsequencing analysis, we have identified a major cellular protein associated with endogenous WT1 to be the inducible chaperone Hsp70. WT1 and Hsp70 are physically associated in embryonic rat kidney cells, in primary Wilms tumor specimens and in cultured cells with inducible expression of WT1. Colocalization of WT1 and Hsp70 is evident within podocytes of the developing kidney, and Hsp70 is recruited to the characteristic subnuclear clusters that contain WT1. The amino-terminal transactivation domain of WT1 is required for binding to Hsp70, and expression of that domain itself is sufficient to induce expression of Hsp70 through the heat shock element (HSE). Substitution of a heterologous Hsp70-binding domain derived from human DNAJ is sufficient to restore the functional properties of a WT1 protein with an amino-terminal deletion, an effect that is abrogated by a point mutation in DNAJ that reduces binding to Hsp70. These observations indicate that Hsp70 is an important cofactor for the function of WT1, and suggest a potential role for this chaperone during kidney differentiation.