136 resultados para inflammatory pseudotumor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Secretory leucocyte protease inhibitor and elafin are members of the whey acidic protein (WAP), or WAP four disulfide-core (WFDC), family of proteins and have multiple contributions to innate defence including inhibition of neutrophil serine proteases and inhibition of the inflammatory response to lipopolysaccharide (LPS). This study aimed to explore potential activities of WFDC12, a previously uncharacterised WFDC protein expressed in the lung. Methods: Recombinant expression and purification of WFDC12 were optimised in Escherichia coli. Antiprotease, antibacterial and immunomodulatory activities of recombinant WFDC12 were evaluated and levels of endogenous WFDC12 protein were characterised by immunostaining and ELISA. Results: Recombinant WFDC12 inhibited cathepsin G, but not elastase or proteinase-3 activity. Monocytic cells pretreated with recombinant WFDC12 before LPS stimulation produced significantly lower levels of the pro-inflammatory cytokines interleukin-8 and monocyte chemotactic protein-1 compared with cells stimulated with LPS alone. Recombinant WFDC12 became conjugated to fibronectin in a transglutaminase-mediated reaction and retained antiprotease activity. In vivo WFDC12 expression was confirmed by immunostaining of human lung tissue sections. WFDC12 levels in human bronchoalveolar lavage fluid from healthy and lung-injured patients were quantitatively compared, showing WFDC12 to be elevated in both patients with acute respiratory distress syndrome and healthy subjects treated with LPS, relative to healthy controls. Conclusions: Together, these results suggest a role for this lesser known WFDC protein in the regulation of lung inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resveratrol offers pleiotropic health benefits including a reported ability to inhibit lipopolysaccharide (LPS)-induced cytokine production. The aim of this work was to prepare, characterize and evaluate a resveratrol nanoparticulate formulation based on zein. For this purpose, the oral bioavailability of the encapsulated polyphenol as well as its anti-inflammatory effects in a mouse model of endotoxic shock was studied. The resveratrol-loaded nanoparticles displayed a mean size of 307±3 nm, with a negative zeta potential (-51.1±1.55 mV), and a polyphenol loading of 80.2±3.26 μg/mg. In vitro, the release of resveratrol from the nanoparticles was found to be pH independent and adjusted well to the Peppas-Sahlin kinetic model, suggesting a mechanism based on the combination of diffusion and erosion of the nanoparticle matrix. Pharmacokinetic studies demonstrated that zein-based nanoparticles provided high and prolonged plasma levels of the polyphenol for at least 48 h. The oral bioavailability of resveratrol when administered in these nanoparticles increased up to 50% (19.2-fold higher than for the control solution of the polyphenol). Furthermore, nanoparticles administered daily for 7 days at 15 mg/kg, were able to diminish the endotoxic symptoms induced in mice by the intraperitoneal administration of LPS (i.e., hypothermia, piloerection and stillness). In addition, serum TNF-α levels were slightly lower (approximately 15%) than those observed in the control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well established that chronic inflammation underpins the development of a number of human cancers, with pro-inflammatory signaling within the tumor microenvironment contributing to tumor progression and metastasis. CXCL8 is an ELR+ pro-inflammatory CXC-chemokine which mediates its effects via signaling through two G protein-coupled receptors, CXCR1 and CXCR2. Elevated CXCL8-CXCR1/2 signaling within the tumor microenvironment of numerous cancers is known to enhance tumor progression via activation of signaling pathways promoting proliferation, angiogenesis, migration, invasion and cell survival. This review provides an overview of established roles of CXCL8-CXCR1/2 signaling in cancer and subsequently, discusses the possible strategies of targeting CXCL8-CXCR1/2 signaling in cancer, covering indirect strategies (e.g., anti-inflammatories, NFκB inhibitors) and direct CXCL8 or CXCR1/2 inhibition (e.g., neutralizing antibodies, small molecule receptor antagonists, pepducin inhibitors and siRNA strategies). Reports of pre-clinical cancer studies and clinical trials using CXCL8-CXCR1/2-targeting strategies for the treatment of inflammatory diseases will be discussed. The future translational opportunities for use of such agents in oncology will be discussed, with emphasis on exploitation in stratified populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: NF-κB-driven inflammation is negatively regulated by the zinc finger protein A20. Gibberellic acid (GA3 ) is a plant-derived diterpenoid with documented anti-inflammatory activity, which is reported to induce A20-like zinc finger proteins in plants. Here, we sought to investigate the anti-inflammatory effect of GA3 in airway epithelial cells and determine if the anti-inflammatory action relates to A20 induction.

EXPERIMENTAL APPROACH: Primary nasal epithelial cells and a human bronchial epithelial cell line (16HBE14o-) were used. Cells were pre-incubated with GA3 , stimulated with Pseudomonas aeruginosa LPS; IL-6 and IL-8 release, A20, NF-κB and IκBα expression were then evaluated. To determine if any observed anti-inflammatory effect occurred via an A20-dependent mechanism, A20 was silenced using siRNA.

KEY RESULTS: Cells pre-incubated with GA3 had significantly increased levels of A20 mRNA (4 h) and protein (24 h), resulting in a significant reduction in IL-6 and IL-8 release. This effect was mediated via reduced IκBα degradation and reduced NF-κB (p65) expression. Furthermore, the anti-inflammatory action of GA3 was abolished in A20-silenced cells.

CONCLUSIONS AND IMPLICATIONS: We showed that A20 induction by GA3 attenuates inflammation in airway epithelial cells, at least in part through its effect on NF-κB and IκBα. GA3 or gibberellin-derived derivatives could potentially be developed into anti-inflammatory drugs for the treatment of chronic inflammatory diseases associated with A20 dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Heparin therapy may be effective in steroid resistant inflammatory bowel disease.

AIM: A randomized pilot study, to compare unfractionated heparin as a first-line therapy with corticosteroids in colonic inflammatory bowel disease.

METHODS: Twenty patients with severe inflammatory bowel disease (ulcerative colitis, n=17; Crohn's colitis, n=3) were randomized to either intravenous heparin for 5 days, followed by subcutaneous heparin for 5 weeks (n=8), or high-dose intravenous hydrocortisone for 5 days followed by oral prednisolone 40 mg daily, reducing by 5 mg per day each week (n=12). After 5 days, non-responders in each treatment group were commenced on combination therapy. Response to therapy was monitored by: clinical disease activity (ulcerative colitis: Truelove and Witt Index; Crohn's colitis: Harvey and Bradshaw Index), stool frequency, serum C-reactive protein and alpha1 acid glycoprotein, endoscopic and histopathological grading.

RESULTS: The response rates were similar in both treatment groups: clinical activity index (heparin vs. steroid; 75% vs. 67%; P=0.23), stool frequency (75% vs. 67%; P=0.61), endoscopic (75% vs. 67%; P=0.4) and histopathological grading (63% vs. 50%; P=0.67). Both treatments were well-tolerated with no serious adverse events.

CONCLUSION: Heparin as a first line therapy is as effective as corticosteroids in the treatment of colonic inflammatory bowel disease. Large multicentre randomized comparative studies are required to determine the role of heparin in the management of inflammatory bowel disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The glucocorticoid (GC) receptor (GR) and Kruppel-like factor Klf4 are transcription factors that play major roles in skin homeostasis. However, whether these transcription factors cooperate in binding genomic regulatory regions in epidermal keratinocytes was not known. Here, we show that in dexamethasone-treated keratinocytes GR and Klf4 are recruited to genomic regions containing adjacent GR and KLF binding motifs to control transcription of the anti-inflammatory genes Tsc22d3 and Zfp36. GR- and Klf4 loss of function experiments showed total GR but partial Klf4 requirement for full gene induction in response to dexamethasone. In wild type keratinocytes induced to differentiate, GR and Klf4 protein expression increased concomitant with Tsc22d3 and Zfp36 up-regulation. In contrast, GR-deficient cells failed to differentiate or fully induce Klf4, Tsc22d3 and Zfp36 correlating with increased expression of the epithelium-specific Trp63, a known transcriptional repressor of Klf4. The identified transcriptional cooperation between GR and Klf4 may determine cell-type specific regulation and have implications for developing therapies for skin diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Reactive microglia are commonly seen in retinal degenerative diseases, and neurotoxic microglia responses can contribute to photoreceptor cell death. We and others have previously shown that translocator protein (18 kDa) (TSPO) is highly induced in retinal degenerations and that the selective TSPO ligand XBD173 (AC-5216, emapunil) exerts strong anti-inflammatory effects on microglia in vitro and ex vivo. Here, we investigated whether targeting TSPO with XBD173 has immuno-modulatory and neuroprotective functions in two mouse models of acute retinal degeneration using bright white light exposure.

METHODS: BALB/cJ and Cx3cr1 (GFP/+) mice received intraperitoneal injections of 10 mg/kg XBD173 or vehicle for five consecutive days, starting 1 day prior to exposure to either 15,000 lux white light for 1 h or 50,000 lux focal light for 10 min, respectively. The effects of XBD173 treatment on microglia and Müller cell reactivity were analyzed by immuno-stainings of retinal sections and flat mounts, fluorescence-activated cell sorting (FACS) analysis, and mRNA expression of microglia markers using quantitative real-time PCR (qRT-PCR). Optical coherence tomography (OCT), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) stainings, and morphometric analyses were used to quantify the extent of retinal degeneration and photoreceptor apoptosis.

RESULTS: Four days after the mice were challenged with bright white light, a large number of amoeboid-shaped alerted microglia appeared in the degenerating outer retina, which was nearly completely prevented by treatment with XBD173. This treatment also down-regulated the expression of TSPO protein in microglia but did not change the TSPO levels in the retinal pigment epithelium (RPE). RT-PCR analysis showed that the microglia/macrophage markers Cd68 and activated microglia/macrophage whey acidic protein (Amwap) as well as the pro-inflammatory genes Ccl2 and Il6 were reduced after XBD173 treatment. Light-induced degeneration of the outer retina was nearly fully blocked by XBD173 treatment. We further confirmed these findings in an independent mouse model of focal light damage. Retinas of animals receiving XBD173 therapy displayed significantly more ramified non-reactive microglia and more viable arrestin-positive cone photoreceptors than vehicle controls.

CONCLUSIONS: Targeting TSPO with XBD173 effectively counter-regulates microgliosis and ameliorates light-induced retinal damage, highlighting a new pharmacological concept for the treatment of retinal degenerations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing evidence suggests that asthma is a heterogeneous disorder regulated by distinct molecular mechanisms. In a cross-sectional study of asthmatics of varying severity (n = 51), endobronchial tissue gene expression analysis revealed three major patient clusters: TH2-high, TH17-high, and TH2/17-low. TH2-high and TH17-high patterns were mutually exclusive in individual patient samples, and their gene signatures were inversely correlated and differentially regulated by interleukin-13 (IL-13) and IL-17A. To understand this dichotomous pattern of T helper 2 (TH2) and TH17 signatures, we investigated the potential of type 2 cytokine suppression in promoting TH17 responses in a preclinical model of allergen-induced asthma. Neutralization of IL-4 and/or IL-13 resulted in increased TH17 cells and neutrophilic inflammation in the lung. However, neutralization of IL-13 and IL-17 protected mice from eosinophilia, mucus hyperplasia, and airway hyperreactivity and abolished the neutrophilic inflammation, suggesting that combination therapies targeting both pathways may maximize therapeutic efficacy across a patient population comprising both TH2 and TH17 endotypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The retina, an immune privileged tissue, has specialized immune defense mechanisms against noxious insults that may exist in diseases such as age-related macular degeneration (AMD), diabetic retinopathy (DR), uveoretinitis and glaucoma. The defense system consists of retinal innate immune cells (including microglia, perivascular macrophages, and a small population of dendritic cells) and the complement system. Under normal aging conditions, retinal innate immune cells and the complement system undergo a low-grade activation (parainflammation) which is important for retinal homeostasis. In disease states such as AMD and DR, the parainflammatory response is dysregulated and develops into detrimental chronic inflammation. Complement activation in the retina is an important part of chronic inflammation and may contribute to retinal pathology in these disease states. Here, we review the evidence that supports the role of uncontrolled or dysregulated complement activation in various retinal degenerative and angiogenic conditions. We also discuss current strategies that are used to develop complement-based therapies for retinal diseases such as AMD. The potential benefits of complement inhibition in DR, uveoretinitis and glaucoma are also discussed, as well as the need for further research to better understand the mechanisms of complement-mediated retinal damage in these disease states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background
Fluid administration to critically ill patients remains the subject of considerable controversy. While intravenous fluid given for resuscitation may be life-saving, a positive fluid balance over time is associated with worse outcomes in critical illness. The aim of this systematic review is to summarise the existing evidence regarding the relationship between fluid administration or balance and clinically important patient outcomes in critical illness.

Methods
We will search Medline, EMBASE, the Cochrane Central Register of Controlled Trials from 1980 to the present and key conference proceedings from 2009 to the present. We will include studies of critically ill adults and children with acute respiratory distress syndrome (ARDS), sepsis and systemic inflammatory response syndrome (SIRS). We will include randomised controlled trials comparing two or more fluid regimens of different volumes of fluid and observational studies reporting the relationship between volume of fluid administered or fluid balance and outcomes including mortality, lengths of intensive care unit and hospital stay and organ dysfunction. Two independent reviewers will assess articles for eligibility, data extraction and quality appraisal. We will conduct a narrative and/or meta-analysis as appropriate.

Discussion
While fluid management has been extensively studied and discussed in the critical care literature, no systematic review has attempted to summarise the evidence for post-resuscitation fluid strategies in critical illness. Results of the proposed systematic review will inform practice and the design of future clinical trials.

Systematic review registration
PROSPERO CRD42013005608. (http://​www.​crd.​york.​ac.​uk/​PROSPERO/​)