211 resultados para expressing negativity


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gene targeting by microRNAs is important in health and disease. We developed a functional assay for identifying microRNA targets and applied it to the K+ channel Kir2.1 (KCNJ2) which is dysregulated in cardiac and vascular disorders. The 3'UTR was inserted downstream of the mCherry red fluorescent protein coding sequence in a mammalian expression plasmid. MicroRNA sequences were inserted into the pSM30 expression vector which provides enhanced green fluorescent protein as an indicator of microRNA expression. HEK293 cells were co-transfected with the mCherry-3'UTR plasmid and a pSM30-based plasmid with a microRNA insert. The principle of the assay is that functional targeting of the 3'UTR by the microRNA results in a decrease in the red/green fluorescence intensity ratio as determined by automated image analysis. The method was validated with miR-1, a known downregulator of Kir2.1 expression, and was used to investigate targeting of the Kir2.1 3'UTR by miR-212. Red/green ratio was lower in miR-212-expressing cells compared to non-targeting controls, an effect that was attenuated by mutating the predicted target site. MiR-212 also reduced inward rectifier current and Kir2.1 protein in HeLa cells. This novel assay has several advantages over traditional luciferase-based assays including larger sample size, amenability to time course studies and adaptability to high-throughput screening.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite being common in epithelial malignancies, the timing of receptor tyrosine kinase (RTK) up-regulation is poorly understood and therefore hampers the identification of the receptor to target for effective treatment. We aimed to determine if RTK expression changes were early events in carcinogenesis. Esophageal adenocarcinoma and its pre-invasive lesion, Barrett's esophagus, were used for immunohistochemical analysis of the RTK panel, EGFR, ErbB2, ErbB3, Met and FGFR2, by utilising a cohort of patients with invasive disease (n = 367) and two cohorts with pre-invasive disease, one cross-sectional (n = 110) and one longitudinal in time (n = 91). The results demonstrated that 51% of esophageal adenocarcinomas over-expressed at least one of the RTK panel; with 21% of these over-expressing multiple receptors. Up-regulation of RTK expression was an early event corresponding with low grade dysplasia development (25% in areas without dysplasia vs. 63% in low grade dysplasia, p

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We reported previously that a Salmonella enterica serovar Enteritidis dam mutant expressing a truncated Dam protein does not agglutinate in the presence of specific antibodies against O9 polysaccharide. Here we investigate the participation of Dam in lipopolysaccharide (LPS) synthesis in Salmonella. The LPS O-antigen profiles of a dam null mutant (SEDeltadam) and the Salmonella serovar Enteritidis parental strain were examined by using electrophoresis and silver staining. Compared to the parental strain, SEDeltadam produced LPS with shorter O-antigen polysaccharide chains. Since Wzz is responsible for the chain length distribution of the O antigen, we investigated whether Dam methylation is involved in regulating wzz expression. Densitometry analysis showed that the amount of Wzz produced by SEDeltadam is threefold lower than the amount of Wzz produced by the parental strain. Concomitantly, the activity of the wzz promoter in SEDeltadam was reduced nearly 50% in logarithmic phase and 25% in stationary phase. These results were further confirmed by reverse transcription-PCR showing that wzz gene expression was threefold lower in the dam mutant than in the parental strain. Our results demonstrate that wzz gene expression is downregulated in a dam mutant, indicating that Dam methylation activates expression of this gene. This work indicates that wzz is a new target regulated by Dam methylation and demonstrates that DNA methylation not only affects the production of bacterial surface proteins but also the production of surface polysaccharides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

WecA is an integral membrane protein that initiates the biosynthesis of enterobacterial common antigen and O-antigen lipopolysaccharide (LPS) by catalyzing the transfer of N-acetylglucosamine (GlcNAc)-1-phosphate onto undecaprenyl phosphate (Und-P) to form Und-P-P-GlcNAc. WecA belongs to a large family of eukaryotic and prokaryotic prenyl sugar transferases. Conserved aspartic acids in putative cytoplasmic loops 2 (Asp90 and Asp91) and 3 (Asp156 and Asp159) were targeted for replacement mutagenesis with either glutamic acid or asparagine. We examined the ability of each mutant protein to complement O-antigen LPS synthesis in a wecA-deficient strain and also determined the steady-state kinetic parameters of the mutant proteins in an in vitro transfer assay. Apparent K(m) and V(max) values for UDP-GlcNAc, Mg(2+), and Mn(2+) suggest that Asp156 is required for catalysis, while Asp91 appears to interact preferentially with Mg(2+), possibly playing a role in orienting the substrates. Topological analysis using the substituted cysteine accessibility method demonstrated the cytosolic location of Asp90, Asp91, and Asp156 and provided a more refined overall topological map of WecA. Also, we show that cells expressing a WecA derivative C terminally fused with the green fluorescent protein exhibited a punctate distribution of fluorescence on the bacterial surface, suggesting that WecA localizes to discrete regions in the bacterial plasma membrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Burkholderia cenocepacia, a bacterium commonly found in the environment, is an important opportunistic pathogen in patients with cystic fibrosis (CF). Very little is known about the mechanisms by which B. cenocepacia causes disease, but chronic infection of the airways in CF patients may be associated, at least in part, with the ability of this bacterium to survive within epithelial cells and macrophages. Survival in macrophages occurs in a membrane-bound compartment that is distinct from the lysosome, suggesting that B. cenocepacia prevents phagolysosomal fusion. In a previous study, we employed signature-tagged mutagenesis and an agar bead model of chronic pulmonary infection in rats to identify B. cenocepacia genes that are required for bacterial survival in vivo. One of the most significantly attenuated mutants had an insertion in the mgtC gene. Here, we show that mgtC is also needed for growth of B. cenocepacia in magnesium-depleted medium and for bacterial survival within murine macrophages. Using fluorescence microscopy, we demonstrated that B. cenocepacia mgtC mutants, unlike the parental isolate, colocalize with the fluorescent acidotropic probe LysoTracker Red. At 4 h postinfection, mgtC mutants expressing monomeric red fluorescent protein cannot retain this protein within the bacterial cytoplasm. Together, these results demonstrate that, unlike the parental strain, an mgtC mutant does not induce a delay in phagolysosomal fusion and the bacterium-containing vacuoles are rapidly targeted to the lysosome, where bacteria are destroyed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic evidence suggests that a family of bacterial and eukaryotic integral membrane proteins (referred to as Wzx and Rft1, respectively) mediates the transbilayer movement of isoprenoid lipid-linked glycans. Recent work in our laboratory has shown that Wzx proteins involved in O-antigen lipopolysaccharide (LPS) assembly have relaxed specificity for the carbohydrate structure of the O-antigen subunit. Furthermore, the proximal sugar bound to the isoprenoid lipid carrier, undecaprenyl-phosphate (Und-P), is the minimal structure required for translocation. In Escherichia coli K-12, N-acetylglucosamine (GlcNAc) is the proximal sugar of the O16 and enterobacterial common antigen (ECA) subunits. Both O16 and ECA systems have their respective translocases, WzxO16 and WzxE, and also corresponding polymerases (WzyO16 and WzyE) and O-antigen chain-length regulators (WzzO16 and WzzE), respectively. In this study, we show that the E. coli wzxE gene can fully complement a wzxO16 translocase deletion mutant only if the majority of the ECA gene cluster is deleted. In addition, we demonstrate that introduction of plasmids expressing either the WzyE polymerase or the WzzE chain-length regulator proteins drastically reduces the O16 LPS-complementing activity of WzxE. We also show that this property is not unique to WzxE, since WzxO16 and WzxO7 can cross-complement translocase defects in the O16 and O7 antigen clusters only in the absence of their corresponding Wzz and Wzy proteins. These genetic data are consistent with the notion that the translocation of O-antigen and ECA subunits across the plasma membrane and the subsequent assembly of periplasmic O-antigen and ECA Und-PP-linked polymers depend on interactions among Wzx, Wzz, and Wzy, which presumably form a multiprotein complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infection of the respiratory tract caused by Burkholderia cepacia complex poses a serious risk for cystic fibrosis (CF) patients due to the high morbidity and mortality associated with the chronic infection and the lack of efficacious antimicrobial treatments. A detailed understanding of the pathogenicity of B. cepacia complex infections is hampered in part by the limited availability of genetic tools and the inherent resistance of these isolates to the most common antibiotics used for genetic selection. In this study, we report the construction of an expression vector which uses the rhamnose-regulated P(rhaB) promoter of Escherichia coli. The functionality of the vector was assessed by expressing the enhanced green fluorescent protein (eGFP) gene (e-gfp) and determining the levels of fluorescence emission. These experiments demonstrated that P(rhaB) is responsive to low concentrations of rhamnose and it can be effectively repressed with 0.2% glucose. We also demonstrate that the tight regulation of gene expression by P(rhaB) promoter allows us to extend the capabilities of this vector to the identification of essential genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bdellovibrio bacteriovorus is a Gram-negative bacterium that preys on other Gram-negative bacteria. The lifecycle of B. bacteriovorus alternates between an extracellular flagellated and highly motile non-replicative attack-phase cell and a periplasmic non-flagellated growth-phase cell. The prey bacterium containing periplasmic bdellovibrios becomes spherical but osmotically stable, forming a structure known as the bdelloplast. After completing the growth phase, newly formed bdellovibrios regain their flagellum and escape the bdelloplast into the environment, where they encounter more prey bacteria. The obligate predatory nature of B. bacteriovorus imposes a major difficulty to introducing mutations in genes directly involved in predation, since these mutants could be non-viable. This work reports the cloning of the B. bacteriovorus 109J motAB operon, encoding proteins from the flagellar motor complex, and a genetic approach based on the expression of a motA antisense RNA fragment to downregulate motility. Periplasmic bdellovibrios carrying the plasmid expressing antisense RNA displayed a marked delay in escaping from bdelloplasts, while the released attack-phase cells showed altered motility. These observations suggest that a functionally intact flagellar motor is required for the predatory lifecycle of B. bacteriovorus. Also, the use of antisense RNA expression may be a useful genetic tool to study the Bdellovibrio developmental cycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intermediate steps in the biosynthesis of the ADP-L-glycero-D-manno-heptose precursor of inner core lipopolysaccharide (LPS) are not yet elucidated. We isolated a mini-Tn10 insertion that confers a heptoseless LPS phenotype in the chromosome of Escherichia coli K-12. The mutation was in a gene homologous to the previously reported rfaE gene from Haemophilus influenzae. The E. coli rfaE gene was cloned into an expression vector, and an in vitro transcription-translation experiment revealed a polypeptide of approximately 55 kDa in mass. Comparisons of the predicted amino acid sequence with other proteins in the database showed the presence of two clearly separate domains. Domain I (amino acids 1 to 318) shared structural features with members of the ribokinase family, while Domain II (amino acids 344 to 477) had conserved features of the cytidylyltransferase superfamily that includes the aut gene product of Ralstonia eutrophus. Each domain was expressed individually, demonstrating that only Domain I could complement the rfaE::Tn10 mutation in E. coli, as well as the rfaE543 mutation of Salmonella enterica SL1102. DNA sequencing of the rfaE543 gene revealed that Domain I had one amino acid substitution and a 12-bp in-frame deletion resulting in the loss of four amino acids, while Domain II remained intact. We also demonstrated that the aut::Tn5 mutation in R. eutrophus is associated with heptoseless LPS, and this phenotype was restored following the introduction of a plasmid expressing the E. coli Domain II. Thus, both domains of rfaE are functionally different and genetically separable confirming that the encoded protein is bifunctional. We propose that Domain I is involved in the synthesis of D-glycero-D-manno-heptose 1-phosphate, whereas Domain II catalyzes the ADP transfer to form ADP-D-glycero-D-manno-heptose.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the functional characterization of the galF gene of strain VW187 (Escherichia coli O7:K1), which encodes a polypeptide displaying structural features common to bacterial UDP-glucose pyrophosphorylases, including the E. coli GalU protein. These enzymes catalyse a reversible reaction converting UTP and glucose-1-phosphate into UDP-glucose and PPi. We show that, although the GalF protein is expressed in vivo, GalF-expressing plasmids cannot complement the phenotype of a galU mutant and extracts from this mutant which only produces GalF are enzymatically inactive. In contrast, the presence of GalU and GalF proteins in the same cell-free extract caused a significant reduction in the rate of pyrophosphorolysis (conversion of UDP-glucose into glucose-1-phosphate) but no significant effect on the kinetics of synthesis of UDP-glucose. The presence of GalF also increased the thermal stability of the enzyme in vitro. The effect of GalF in the biochemical properties of the UDP-glucose pyrophosphorylase required the co-synthesis of GalF and GalU, suggesting that they could interact as components of the oligomeric enzyme. The physical interaction of GalU and GalF was demonstrated in vivo by the co-expression of both proteins as fusion products using a yeast two-hybrid system. Furthermore, using a pair of galF-/galU+ and galF/galU+ isogenic strains, we demonstrated that the presence of GalF is associated with an increased concentration of intracellular UDP-glucose as well as with an enhancement of the thermal stability of the UDP-glucose pyrophosphorylase in vivo. We propose that GalF is a non-catalytic subunit of the UDP-glucose pyrophosphorylase modulating the enzyme activity to increase the formation of UDP-glucose, and this function is important for bacterial adaptation to conditions of stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aerobactin gene cluster in pColV-K30 consists of five genes (iucABCD iutA); four of these (iucABCD) are involved in aerobactin biosynthesis, whereas the fifth one (iutA) encodes the ferriaerobactin outer membrane receptor. iucD encodes lysine:N6-hydroxylase, which catalyzes the first step in aerobactin biosynthesis. Regardless of the method used for cell rupture, we have consistently found that IucD remains membrane bound, and repeated efforts to achieve a purified and active soluble form of the enzyme have been unsuccessful. To circumvent this problem, we have constructed recombinant IucD proteins with modified amino termini by creating three in-frame gene fusions of IucD to the amino-terminal amino acids of the cytoplasmic enzyme beta-galactosidase. Two of these constructs resulted in the addition to the iucD coding region of a hydrophilic leader sequence of 13 and 30 amino acids. The other construct involved the deletion of the first 47 amino acids of the IucD amino terminus and the addition of 19 amino acids of the amino terminus of beta-galactosidase. Cells expressing any of the three recombinant IucD forms were found to produce soluble N6-hydroxylysine. One of these proteins, IucD439, was purified to homogeneity from the soluble fraction of the cell lysates, and it was capable of participating in the biosynthesis of aerobactin, as determined in vitro by a cell-free system and in vivo by a cross-feeding bioassay. A medium ionic strength of 0.25 (250 mM NaCl) or higher was required to maintain the protein in a catalytically functional, tetrameric state.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ideal free distribution model which relates the spatial distribution of mobile consumers to that of their resource is shown to be a limiting case of a more general model which we develop using simple concepts of diffusion. We show how the ideal free distribution model can be derived from a more general model and extended by incorporating simple models of social influences on predator spacing. First, a free distribution model based on patch switching rules, with a power-law interference term, which represents instantaneous biased diffusion is derived. A social bias term is then introduced to represent the effect of predator aggregation on predator fitness, separate from any effects which act through intake rate. The social bias term is expanded to express an optimum spacing for predators and example solutions of the resulting biased diffusion models are shown. The model demonstrates how an empirical interference coefficient, derived from measurements of predator and prey densities, may include factors expressing the impact of social spacing behaviour on fitness. We conclude that empirical values of log predator/log prey ratio may contain information about more than the relationship between consumer and resource densities. Unlike many previous models, the model shown here applies to conditions without continual input. (C) 1997 Academic Press Limited.</p>

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Burkholderia cenocepacia is an opportunistic pathogen that causes chronic infection and induces progressive respiratory inflammation in cystic fibrosis patients. Recognition of bacteria by mononuclear cells generally results in the activation of caspase-1 and processing of IL-1ß, a major proinflammatory cytokine. In this study, we report that human pyrin is required to detect intracellular B. cenocepacia leading to IL-1ß processing and release. This inflammatory response involves the host adapter molecule ASC and the bacterial type VI secretion system (T6SS). Human monocytes and THP-1 cells stably expressing either small interfering RNA against pyrin or YFP-pyrin and ASC (YFP-ASC) were infected with B. cenocepacia and analyzed for inflammasome activation. B. cenocepacia efficiently activates the inflammasome and IL-1ß release in monocytes and THP-1. Suppression of pyrin levels in monocytes and THP-1 cells reduced caspase-1 activation and IL-1ß release in response to B. cenocepacia challenge. In contrast, overexpression of pyrin or ASC induced a robust IL-1ß response to B. cenocepacia, which correlated with enhanced host cell death. Inflammasome activation was significantly reduced in cells infected with T6SS-defective mutants of B. cenocepacia, suggesting that the inflammatory reaction is likely induced by an as yet uncharacterized effector(s) of the T6SS. Together, we show for the first time, to our knowledge, that in human mononuclear cells infected with B. cenocepacia, pyrin associates with caspase-1 and ASC forming an inflammasome that upregulates mononuclear cell IL-1ß processing and release.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The DNA damage response encompasses a complex series of signaling pathways that function to regulate and facilitate the repair of damaged DNA. Recent studies have shown that the repair of transcriptionally inactive chromatin, named heterochromatin, is dependent upon the phosphorylation of the co-repressor, Krüppel-associated box (KRAB) domain-associated protein (KAP-1), by the ataxia telangiectasia-mutated (ATM) kinase. Co-repressors, such as KAP-1, function to regulate the rigid structure of heterochromatin by recruiting histone-modifying enzymes, such HDAC1/2, SETDB1, and nucleosome-remodeling complexes such as CHD3. Here, we have characterized a phosphorylation site in the HP1-binding domain of KAP-1, Ser-473, which is phosphorylated by the cell cycle checkpoint kinase Chk2. Expression of a nonphosphorylatable S473A mutant conferred cellular sensitivity to DNA-damaging agents and led to defective repair of DNA double-strand breaks in heterochromatin. In addition, cells expressing S473A also displayed defective mobilization of the HP1-ß chromodomain protein. The DNA repair defect observed in cells expressing S473A was alleviated by depletion of HP1-ß, suggesting that phosphorylation of KAP-1 on Ser-473 promotes the mobilization of HP1-ß from heterochromatin and subsequent DNA repair. These results suggest a novel mechanism of KAP-1-mediated chromatin restructuring via Chk2-regulated HP1-ß exchange from heterochromatin, promoting DNA repair.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The evolutionarily conserved septin family of genes encode GTP binding proteins involved in a variety of cellular functions including cytokinesis, apoptosis, membrane dynamics and vesicle trafficking. Septin proteins can form hetero-oligomeric complexes and interact with other proteins including actin and tubulin. The human SEPT9 gene on chromosome 17q25.3 has a complex genomic architecture with 18 different transcripts that can encode 15 distinct polypeptides. Two distinct transcripts with unique 5' ends (SEPT9_v4 and SEPT9_v4*) encode the same protein. In tumours the ratio of these transcripts changes with elevated levels of SEPT9_v4* mRNA, a transcript that is translated with enhanced efficiency leading to increased SEPT9_i4 protein.

METHODS: We have examined the effect of over-expression of SEPT9_i4 on the dynamics of microtubule polymer mass in cultured cells.

RESULTS: We show that the microtubule network in SEPT9_i4 over-expressing cells resists disruption by paclitaxel or cold incubation but also repolymerises tubulin more slowly after microtubule depolymerisation. Finally we show that SEPT9_i4 over-expressing cells have enhanced survival in the presence of clinically relevant microtubule acting drugs but not after treatment with DNAinteracting agents.

CONCLUSIONS: Given that SEPT9 over-expression is seen in diverse tumours and in particular ovarian and breast cancer, such data indicate that SEPT9_v4 expression may be clinically relevant and contribute to some forms of drug resistance.